betulinic acid has been researched along with rifampin in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
Authors | Studies |
---|---|
Franzblau, SG; Gu, JQ; Montenegro, G; Timmermann, BN; Wang, Y | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Baikova, IP; Giniyatullina, GV; Kataev, VE; Kazakova, OB; Lopatina, TV; Medvedeva, NI; Smirnova, IE | 1 |
Croft, SL; Loiseau, PM; Pomel, S | 1 |
1 review(s) available for betulinic acid and rifampin
Article | Year |
---|---|
Chitosan Contribution to Therapeutic and Vaccinal Approaches for the Control of Leishmaniasis.
Topics: Amphotericin B; Animals; Antimony; Antiprotozoal Agents; Betulinic Acid; Biocompatible Materials; Chitosan; Curcumin; Drug Carriers; Drug Compounding; Humans; Hydrogen-Ion Concentration; Leishmaniasis; Leishmaniasis Vaccines; Macrophages; Nanoparticles; Paromomycin; Pentacyclic Triterpenes; Polymers; Rifampin; Selenium; Thiomalates; Titanium; Triterpenes; Ursolic Acid | 2020 |
4 other study(ies) available for betulinic acid and rifampin
Article | Year |
---|---|
Constituents of Senecio chionophilus with potential antitubercular activity.
Topics: Antitubercular Agents; Chile; Microbial Sensitivity Tests; Molecular Structure; Mycobacterium tuberculosis; Nuclear Magnetic Resonance, Biomolecular; Plant Roots; Plants, Toxic; Senecio; Sesquiterpenes; Stereoisomerism | 2004 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Synthesis and antimycobacterial activity of triterpeni≿ A-ring azepanes.
Topics: Antitubercular Agents; Azepines; Dose-Response Relationship, Drug; Microbial Sensitivity Tests; Molecular Structure; Mycobacterium tuberculosis; Structure-Activity Relationship; Triterpenes | 2018 |