betulinic acid has been researched along with kaempferol in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (16.67) | 29.6817 |
2010's | 5 (83.33) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Broedel, SE; Cihlar, RL; ElSohly, HN; Ferreira, D; Jacob, MR; Joshi, AS; Khan, IA; Khan, SI; Li, XC; Raulli, RE; Walker, LA; Zhang, Z | 1 |
Chin, YW; Jee, JG; Jeong, YJ; Keum, YS; Kim, Y; Lee, J; Lee, JM; Yu, MS | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Ahn, HC; Cho, SC; Choi, BY; Fei, X; Keum, YS; Kim, HJ; Lee, K; Seo, SY | 1 |
Andrade, EH; Brasil, DS; Donza, MR; Guilhon, GM; Moraes, LS; Rodrigues, AP; Silva, BJ; Silva, EO; Zoghbi, Md | 1 |
Cui, CL; Liang, YN; Liao, ZX; Liu, HB; Liu, SJ; Tang, ZS; Zhang, Y | 1 |
6 other study(ies) available for betulinic acid and kaempferol
Article | Year |
---|---|
Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies.
Topics: Antifungal Agents; Candida albicans; Combretaceae; Cryptococcus neoformans; Enzyme Inhibitors; Fatty Acid Synthases; Inhibitory Concentration 50; Isoflavones; Melastomataceae; Molecular Structure; Moraceae; Paspalum; Plants, Medicinal; Saccharomyces cerevisiae; Structure-Activity Relationship; Tannins; Triterpenes | 2002 |
Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13.
Topics: Adenosine Triphosphate; Antiviral Agents; Apigenin; Breast; Cell Line; Cell Proliferation; Colorimetry; DNA; DNA Helicases; Epithelial Cells; Female; Flavonoids; Fluorescence Resonance Energy Transfer; Hepacivirus; Humans; Hydrolysis; Inhibitory Concentration 50; Kinetics; Methyltransferases; RNA Helicases; Severe acute respiratory syndrome-related coronavirus; Species Specificity; Viral Nonstructural Proteins; Viral Proteins | 2012 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Discovery of α-mangostin as a novel competitive inhibitor against mutant isocitrate dehydrogenase-1.
Topics: Binding, Competitive; Drug Discovery; Humans; Isocitrate Dehydrogenase; MCF-7 Cells; Molecular Structure; Mutation; Recombinant Proteins; Structure-Activity Relationship; Xanthones | 2015 |
Leishmanicidal Activity of (+)-Phyllanthidine and the Phytochemical Profile of Margaritaria nobilis (Phyllanthaceae).
Topics: Alkaloids; Animals; Antiprotozoal Agents; Betulinic Acid; Dose-Response Relationship, Drug; Euphorbiaceae; Gallic Acid; Glucosides; Heterocyclic Compounds, 4 or More Rings; Hydrolyzable Tannins; Inhibitory Concentration 50; Kaempferols; Leishmania braziliensis; Life Cycle Stages; Macrophages, Peritoneal; Male; Mice; Mice, Inbred BALB C; Pentacyclic Triterpenes; Phytochemicals; Plant Extracts; Primary Cell Culture; Triterpenes | 2015 |
[Chemical Constituents from Rubus stans].
Topics: Betulinic Acid; Kaempferols; Pentacyclic Triterpenes; Rubus; Sitosterols; Triterpenes; Ursolic Acid | 2016 |