betaine and cardiovascular agents

betaine has been researched along with cardiovascular agents in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (50.00)29.6817
2010's3 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Dambrova, M; Kalvinsh, I; Kirjanova, O; Liepinsh, E; Loca, D; Pugovichs, O; Vilskersts, R1
Chlopicki, S; Dambrova, M; Grinberga, S; Kalvinsh, I; Liepinsh, E; Mateuszuk, L; Vilskersts, R1
Cirule, H; Dambrova, M; Kalvinsh, I; Kuka, J; Liepinsh, E; Pugovics, O; Skapare, E; Svalbe, B; Vilskersts, R1
Dambrova, M; Grinberga, S; Kalvinsh, I; Konrade, I; Kuka, J; Liepinsh, E; Pugovics, O; Skapare, E1
Cirule, H; Dambrova, M; Kalvinsh, I; Kuka, J; Liepinsh, E; Makrecka, M; Pugovics, O; Vilskersts, R1
Cirule, H; Dambrova, M; Grinberga, S; Mezhapuke, R; Vilskersts, R; Zharkova-Malkova, O1

Trials

1 trial(s) available for betaine and cardiovascular agents

ArticleYear
Mildronate treatment alters γ-butyrobetaine and l-carnitine concentrations in healthy volunteers.
    The Journal of pharmacy and pharmacology, 2011, Volume: 63, Issue:9

    Topics: Adult; Betaine; Cardiovascular Agents; Carnitine; Diet; Female; Humans; Male; Meat; Methylhydrazines; Middle Aged; Young Adult

2011

Other Studies

5 other study(ies) available for betaine and cardiovascular agents

ArticleYear
Mildronate, an inhibitor of carnitine biosynthesis, induces an increase in gamma-butyrobetaine contents and cardioprotection in isolated rat heart infarction.
    Journal of cardiovascular pharmacology, 2006, Volume: 48, Issue:6

    Topics: Animals; Betaine; Cardiovascular Agents; Carnitine; Chromatography, High Pressure Liquid; Coronary Circulation; gamma-Butyrobetaine Dioxygenase; In Vitro Techniques; Injections, Intraperitoneal; Male; Methylhydrazines; Myocardial Infarction; Myocardium; Rats; Rats, Wistar

2006
Mildronate, a regulator of energy metabolism, reduces atherosclerosis in apoE/LDLR-/- mice.
    Pharmacology, 2009, Volume: 83, Issue:5

    Topics: Animals; Aorta; Atherosclerosis; Betaine; Cardiovascular Agents; Carnitine; Energy Metabolism; Female; Lipids; Male; Methylhydrazines; Mice; Mice, Knockout; Rats; Rats, Wistar

2009
Effects of long-term mildronate treatment on cardiac and liver functions in rats.
    Basic & clinical pharmacology & toxicology, 2009, Volume: 105, Issue:6

    Topics: Animals; Betaine; Biomarkers; Blood Glucose; Body Weight; Cardiovascular Agents; Carnitine; Carnitine O-Palmitoyltransferase; Dose-Response Relationship, Drug; Glucose; Heart; Hemodynamics; Lipids; Liver; Liver Glycogen; Male; Methylhydrazines; Myocardium; Rats; Rats, Wistar; Time Factors; Toxicity Tests, Chronic

2009
The cardioprotective effect of mildronate is diminished after co-treatment with L-carnitine.
    Journal of cardiovascular pharmacology and therapeutics, 2012, Volume: 17, Issue:2

    Topics: Animals; Betaine; Cardiovascular Agents; Carnitine; Carnitine O-Palmitoyltransferase; Chromatography, Liquid; Drug Interactions; Fatty Acids; Male; Methylhydrazines; Mitochondria, Heart; Mitochondrial Membranes; Myocardial Infarction; Myocardial Reperfusion Injury; Rats; Rats, Wistar; Tandem Mass Spectrometry; Vitamin B Complex

2012
Elevated vascular γ-butyrobetaine levels attenuate the development of high glucose-induced endothelial dysfunction.
    Clinical and experimental pharmacology & physiology, 2013, Volume: 40, Issue:8

    Topics: Animals; Aorta; Betaine; Cardiovascular Agents; Carnitine; Drug Therapy, Combination; Endothelium, Vascular; Glucose; Male; Methylhydrazines; Rats; Rats, Wistar

2013