betadex has been researched along with temoporfin* in 2 studies
2 other study(ies) available for betadex and temoporfin
Article | Year |
---|---|
The alteration of temoporfin distribution in multicellular tumor spheroids by β-cyclodextrins.
To be effective anticancer drugs must penetrate tissue efficiently, reaching all target population of cancer cells in a concentration sufficient to exert a therapeutic effect. This study aimed to investigate the ability of methyl-β-cyclodextrin (Me-β-CD) and 2-hydroxypropyl-β-cyclodextrin (Hp-β-CD) to alter the penetration and diffusion of temoporfin (mTHPC) in HT29 multicellular tumor spheroids. mTHPC had а nonhomogenous distribution only on the periphery of spheroids. The presence of β-CDs significantly altered the distribution of mTHPC consisting in the increase of both the depth of photosensitizer penetration and accumulation in HT29 spheroids. We suggest that this improvement is related to the nanoshuttle mechanism of β-CD action, when β-CDs facilitate mTHPC transportation to the cells in the inner layers of spheroids. As a result of mTHPC distribution improvement, β-CDs enhance mTHPC photosensitizing activity towards HT29 multicellular tumor spheroids. The observed effects strongly depend on the type of β-CD. Thus, varying the type of β-CD we can finely tune the possibility of using mTHPC for diagnostic (delimitation of tumor margins) or therapeutic purposes. Topics: 2-Hydroxypropyl-beta-cyclodextrin; beta-Cyclodextrins; Drug Carriers; HT29 Cells; Humans; Mesoporphyrins; Neoplasms; Spheroids, Cellular | 2017 |
Inclusion complexation with β-cyclodextrin derivatives alters photodynamic activity and biodistribution of meta-tetra(hydroxyphenyl)chlorin.
Application of meta-tetra(hydroxyphenyl)chorin (mTHPC) one of the most effective photosensitizer (PS) in photodynamic therapy of solid tumors encounters several complications resulting from its insolubility in aqueous medium. To improve its solubility and pharmacokinetic properties, two modified β-cyclodextrins (β-CDs) methyl-β-cyclodextrin (M-β-CD) and 2-hydroxypropyl-β-cyclodextrin (Hp-β-CD) were proposed. The aim of this work was to evaluate the effect of β-CDs on mTHPC behavior at various stages of its distribution in vitro and in vivo. For this purpose, we have studied the influence of the β-CDs on mTHPC binding to the serum proteins, its accumulation, distribution and photodynamic efficiency in HT29 cells. In addition, the processes of mTHPC biodistribution in HT29 tumor bearing mice after intravenous injection of PS alone or with the β-CDs were compared. Interaction of mTHPC with studied β-CDs leads to the formation of inclusion complexes that completely abolishes its aggregation after introduction into serum. It was demonstrated that the β-CDs have a concentration-dependent effect on the process of mTHPC distribution in blood serum. At high concentrations, β-CDs can form inclusion complexes with mTHPC in the blood that can have a significant impact on PS distribution out of the vascular system in solid tissues. Besides, the β-CDs increase diffusion movement of mTHPC molecules that can significantly accelerate the delivery of PS to the targets cells and tissues. In vivo study confirms the fact that the use of β-CDs allows to modify mTHPC distribution processes in tumor bearing animals that is reflected in the decreased level of PS accumulation in skin and muscles, as well as in the increased PS accumulation in tumor. Further studies are underway to verify the optimal protocols of mTHPC/β-CD formulation for photodynamic therapy. Topics: 2-Hydroxypropyl-beta-cyclodextrin; Animals; beta-Cyclodextrins; Blood Proteins; Female; HT29 Cells; Humans; Kidney; Liver; Mesoporphyrins; Mice; Muscles; Neoplasms; Photochemotherapy; Photosensitizing Agents; Skin | 2016 |