betadex has been researched along with sodium-chlorate* in 2 studies
2 other study(ies) available for betadex and sodium-chlorate
Article | Year |
---|---|
Protein transport in human cells mediated by covalently and noncovalently conjugated arginine-rich intracellular delivery peptides.
Generally, biomacromolecules, such as DNA, RNA, and proteins, cannot freely permeate into cells from outside the membrane. Protein transduction domains (PTDs) are peptides containing a large number of basic amino acids that can deliver macromolecules into living cells. Arginine-rich intracellular delivery (AID) peptides are more effective than other PTD peptides at carrying large molecules across cellular membranes. In the present study, we demonstrated that AID peptides are able to deliver cargo proteins into living cells in both covalent and noncovalent protein transductions (CNPT) synchronously. Human A549 cells were treated with a fluorescent protein (FP) that was noncovalently premixed with another AID-conjugated FP, which emitted a different color. After the delivery of carrier AID-FP and cargo FP into cells, the emission and merge of fluorescence were observed and recorded with a confocal microscope, while the internalization efficiency was quantitatively analyzed with a flow cytometer. The optimal molecular ratio between carrier AID-FP and cargo FP for CNPT is about 1:1/3. Fluorescence resonance energy transfer (FRET) assay further confirmed AID-conjugates can physically interact with its cargo FPs in CNPT in cells. Potential uptake mechanisms of CNPT may involve a combination of multiple internalization pathways. After delivery, intracellular distributions of AID-conjugates and FPs may possibly colocalize with lysosomes. These results will facilitate the understanding of multiple mechanisms of PTDs, and provide a powerful tool for simultaneously delivering several proteins or compounds in protein internalization. Topics: Amiloride; Arginine; beta-Cyclodextrins; Cell Line, Tumor; Cell Membrane; Cell Survival; Chlorates; Cytochalasin D; Drug Carriers; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; Humans; Luminescent Proteins; Lysosomes; Mitochondria; Nocodazole; Oligopeptides; Peptides; Pinocytosis; Plasmids; Protein Transport; Recombinant Fusion Proteins; Red Fluorescent Protein; Temperature | 2009 |
Beta-cyclodextrin-based ferrocene-imprinted gold electrodes.
A new stepwise self-assembly procedure is described for the preparation of functional cyclodextrin-modified electrodes. The approach is based on the formation of alkanethiol/lipoylamide-beta-cyclodextrin monolayers with the thiol component responsible for blocking of the electrode surface and lipoylamide-beta-cyclodextrin molecules-for controlled opening of the access of the electroactive probe to the electrode. Functionalization of the electrode is achieved by means of a new cyclodextrin derivative-mono(6-deoxy-6-lipoylamide)-per-2,3,6-O-acetyl-beta-cyclodextrin-prepared in the peracetyl form and deacetylated directly on the electrode surface following the cyclodextrin self-assembly. The progress of deacetylation was monitored by the MALDI MS technique. Deacetylation caused opening of the active sites toward solution probes. The response toward ferrocene was found to be highly improved when ferrocene was added to the solution following self-assembly of cyclodextrin but prior to the thiol self-assembly step (imprinting method). The proposed synthesis and sequential monolayer formation scheme lead to well-organized and stable modified electrode surfaces with improved sensitivity toward solution species compared to other procedures of electrode modification with the cyclodextrin derivatives. Topics: Algorithms; Amides; beta-Cyclodextrins; Biosensing Techniques; Chlorates; Cyclodextrins; Electrochemistry; Electrodes; Ferrous Compounds; Gold; Metallocenes; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Sulfates; Sulfhydryl Compounds; Thermodynamics; Thioctic Acid | 2003 |