betadex has been researched along with scutellarein* in 2 studies
2 other study(ies) available for betadex and scutellarein
Article | Year |
---|---|
Host-guest inclusion system of scutellarein with 2-hydroxypropyl-beta-cyclodextrin: preparation, characterization, and anticancer activity.
The inclusion complexation behavior of scutellarein (SCUE) with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) has been investigated in both solution and in the solid state. SCUE/HP-β-CD solid system was prepared by suspension method. The formation of SCUE/HP-β-CD complex in aqueous solution was demonstrated by fluorescence spectroscopy, and the Job plot showed a maximum at a molar fraction of 0.5, indicating 1:1 inclusion complexation between SCUE and HP-β-CD. However, SCUE/HP-β-CD inclusion complex was characterized by means of XRD, DSC, (1)H, and two-dimensional NMR. Through the complexation between HP-β-CD and SCUE, the water solubility and antitumor activity of SCUE were obviously increased. This satisfactory water solubility and high antitumor activity of the SCUE/HP-β-CD complex will be potentially useful for its application on human colon cancer chemotherapies. Topics: 2-Hydroxypropyl-beta-cyclodextrin; Antineoplastic Agents; Apigenin; beta-Cyclodextrins; Cell Line, Tumor; Cell Survival; HCT116 Cells; HT29 Cells; Humans; Magnetic Resonance Spectroscopy; Solubility | 2014 |
Nanosuspension development of scutellarein as an active and rapid orally absorbed precursor of its BCS class IV glycoside scutellarin.
This work addressed solubility and membrane permeability problems of Biopharmaceutics Classification System (BCS) Class IV glycoside scutellarin (SG) by developing a nanosuspension of its aglycone scutellarein (S) as a precursor. An S nanosuspension containing poloxamer 188 was prepared using antisolvent precipitation where hydroxypropyl-β-cyclodextrin was utilized as a lyophilizing protectant. Particle size and polydispersity index after redispersion were 342.6 ± 18.2 and 0.32 ± 0.06 nm, respectively. The dissolution rate of the S nanosuspension was superior compared with the physical mixture. No free S, but SG and SG's isomer were detected in plasma following oral delivery of SG or S, S nanosuspension or physical mixture of S. The Cmax values of SG after dosing with the S nanosuspension were 12.0, 8.0, and 4.5-fold higher than the SG, S, or physical mixture, respectively. The Tmax and mean residence time (MRTlast ) of SG after dosing with the S nanosuspension were significantly shorter than S and SG. Treatments with SG, S, or S nanosuspensions reduced the hemorrhage rate in a zebrafish model, but the S nanosuspension exhibited the strongest rescue effect. This study highlights a new strategy to circumvent BCS Class IV flavonoid glycosides using a formulation of their aglycone as a precursor to accelerate oral absorption and improve bioactivity. Topics: 2-Hydroxypropyl-beta-cyclodextrin; Administration, Oral; Animals; Apigenin; beta-Cyclodextrins; Biological Availability; Biotransformation; Cerebral Hemorrhage; Chemistry, Pharmaceutical; Disease Models, Animal; Excipients; Freeze Drying; Glucuronates; Nanostructures; Nanotechnology; Particle Size; Poloxamer; Prodrugs; Rats, Sprague-Dawley; Solubility; Technology, Pharmaceutical; Zebrafish | 2014 |