betadex has been researched along with resazurin* in 2 studies
2 other study(ies) available for betadex and resazurin
Article | Year |
---|---|
Complex Formation of Resorufin and Resazurin with Β-Cyclodextrins: Can Cyclodextrins Interfere with a Resazurin Cell Viability Assay?
Resazurin (or Alamar Blue) is a poorly fluorescent dye. During the cellular reduction of resazurin, its highly fluorescent product resorufin is formed. Resazurin assay is a commonly applied method to investigate viability of bacterial and mammalian cells. In this study, the interaction of resazurin and resorufin with β-cyclodextrins was investigated employing spectroscopic and molecular modeling studies. Furthermore, the influence of β-cyclodextrins on resazurin-based cell viability assay was also tested. Both resazurin and resorufin form stable complexes with the examined β-cyclodextrins (2.0-3.1 × 10³ and 1.3-1.8 × 10³ L/mol were determined as binding constants, respectively). Cells were incubated for 30 and 120 min and treated with resazurin and/or β-cyclodextrins. Our results suggest that cyclodextrins are able to interfere with the resazurin-based cell viability assay that presumably results from the following mechanisms: (1) inhibition of the cellular uptake of resazurin and (2) enhancement of the fluorescence signal of the formed resorufin. Topics: beta-Cyclodextrins; Binding Sites; Cell Survival; Fluorescent Dyes; Hep G2 Cells; Humans; Indicators and Reagents; Models, Molecular; Molecular Structure; Oxazines; Oxidation-Reduction; Spectrometry, Fluorescence; Thermodynamics; Xanthenes | 2018 |
Complexation induced fluorescence and acid-base properties of dapoxyl dye with γ-cyclodextrin: a drug-binding application using displacement assays.
Host-guest complexation of dapoxyl sodium sulphonate (DSS), an intramolecular charge transfer dye with water-soluble and non-toxic macrocycle γ-cyclodextrin (γ-CD), has been investigated in a wide pH range. Steady-state absorption, fluorescence and time-resolved fluorescence measurements confirm the positioning of DSS into the hydrophobic cavity of γ-CD. A large fluorescence enhancement ca. 30 times, due to 1 : 2 complex formation and host-assisted guest-protonation have been utilised for developing a method for the utilisation of CD based drug-delivery applications. A simple fluorescence-displacement based approach is implemented at physiological pH for the assessment of binding strength of pharmaceutically useful small drug molecules (ibuprofen, paracetamol, methyl salicylate, salicylic acid, aspirin, and piroxicam) and six important antibiotic drugs (resazurin, thiamphenicol, chloramphenicol, ampicillin, kanamycin, and sorbic acid) with γ-CD. Topics: Acetaminophen; Ampicillin; Aspirin; beta-Cyclodextrins; Binding Sites; Chloramphenicol; Drug Delivery Systems; Fluorescence; Fluorescent Dyes; Fluorometry; Hydrogen-Ion Concentration; Ibuprofen; Kanamycin; Oxazines; Oxazoles; Piroxicam; Salicylates; Salicylic Acid; Sorbic Acid; Sulfonamides; Thiamphenicol; Xanthenes | 2015 |