betadex has been researched along with fructose-1-6-diphosphate* in 1 studies
1 other study(ies) available for betadex and fructose-1-6-diphosphate
Article | Year |
---|---|
Caveolae and the organization of carbohydrate metabolism in vascular smooth muscle.
We have previously found that glycolysis and gluconeogenesis occur in separate "compartments" of the VSM cell. These compartments may result from spatial separation of glycolytic and gluconeogenic enzymes (Lloyd and Hardin [1999] Am J Physiol Cell Physiol. 277:C1250-C1262). We have also found that an intact plasma membrane is essential for compartmentation to exist (Lloyd and Hardin [2000] Am J Physiol Cell Physiol. 278:C803-C811), suggesting that glycolysis and gluconeogenesis may be associated with distinct plasma membrane microdomains. Caveolae are one such microdomain, in which proteins of related function colocalize. Thus, we hypothesized that membrane-associated glycolysis occurs in association with caveolae, while gluconeogenesis is localized to non-caveolae domains. To test this hypothesis, we disrupted caveolae in vascular smooth muscle (VSM) of pig cerebral microvessels (PCMV) with beta methyl-cyclodextrin (CD) and examined the metabolism of [2-(13)C]glucose (a glycolytic substrate) and [1-(13)C]fructose 1,6-bisphosphate (FBP, a gluconeogenic substrate in PCMV) using (13)C nuclear magnetic resonance spectroscopy. Caveolar disruption reduced flux of [2-(13)C]glucose to [2-(13)C]lactate, suggesting that caveolar disruption partially disrupted the glycolytic pathway. Caveolae disruption may also have resulted in a breakdown of compartmentation, since conversion of [1-(13)C]FBP to [3-(13)C]lactate was increased by CD treatment. Alternatively, the increased [3-(13)C]lactate production may reflect changes in FBP uptake, since conversion of [1-(13)C]FBP to [3-(13)C]glucose was also elevated in CD-treated cells. Thus, a link between caveolar organization and metabolic organization may exist. Topics: Animals; beta-Cyclodextrins; Brain; Carbohydrate Metabolism; Caveolae; Cyclodextrins; Fructosediphosphates; Gluconeogenesis; Glucose; Glycolysis; Microscopy, Electron; Muscle, Smooth, Vascular; Swine | 2001 |