betadex has been researched along with beta-lapachone* in 5 studies
5 other study(ies) available for betadex and beta-lapachone
Article | Year |
---|---|
Intestinal Permeability of β-Lapachone and Its Cyclodextrin Complexes and Physical Mixtures.
β-Lapachone (βLAP) is a promising, poorly soluble, antitumoral drug. βLAP combination with cyclodextrins (CDs) improves its solubility and dissolution but there is not enough information about the impact of cyclodextrins on βLAP intestinal permeability. The objectives of this work were to characterize βLAP intestinal permeability and to elucidate cyclodextrins effect on the dissolution properties and on the intestinal permeability. The final goal was to evaluate CDs influence on the oral absorption of βLAP.. Binary systems (physical mixtures and inclusion complexes) including βLAP and CDs (β-cyclodextrin: βCD, random-methyl-β-cyclodextrin: RMβCD and sulfobutylether-β-cyclodextrin: SBEβCD) have been prepared and analysed by differential scanning calorimetry. βLAP (and its combinations with CDs) absorption rate coefficients and effective permeability values have been determined in vitro in MDCK or MDCK-Mdr1 monolayers and in situ in rat by a closed loop perfusion technique.. DSC results confirmed the formation of the inclusion complexes. βLAP-CDs inclusion complexes improve drug solubility and dissolution rate in comparison with physical mixtures. βLAP presented a high permeability value which can provide complete oral absorption. Its oral absorption is limited by its low solubility and dissolution rate. Cyclodextrin (both as physical mixtures and inclusion complexes) showed a positive effect on the intestinal permeability of βLAP. Complexation with CDs does not reduce βLAP intestinal permeability in spite of the potential negative effect of the reduction in free fraction of the drug.. The use of RMβCD or SBEβCD inclusion complexes could benefit βLAP oral absorption by enhancing its solubility, dissolution rate and permeability. Topics: Animals; Antineoplastic Agents, Phytogenic; ATP Binding Cassette Transporter, Subfamily B; beta-Cyclodextrins; Cell Membrane Permeability; Dogs; Drug Compounding; Drug Liberation; Electric Impedance; Excipients; Intestinal Absorption; Intestinal Mucosa; Intestine, Small; Madin Darby Canine Kidney Cells; Methylation; Naphthoquinones; Perfusion; Rats, Wistar; Recombinant Proteins; Solubility | 2016 |
Effect of storage conditions on the stability of β-lapachone in solid state and in solution.
In this work, the effects of several technological factors on the stability of β-lapachone (βLAP) in solution and in the solid state were investigated.. The effects of relative humidity and light on the stability of βLAP in the solid state were studied. Samples were characterized by liquid chromatography, thermal analysis, X-ray powder diffraction and optical microscopy. In solution, the effects of light conditions and additives (cyclodextrins) were also evaluated. Molecular modelling was used to support the degradation mechanism involved. Additionally, the pH stability profile of βLAP was established.. The synergism of relative humidity and light promoted degradation of βLAP in the solid state, with important consequences for the physical and chemical characteristics of the drug after storage. Random methyl-β-cyclodextrin was able to protect the drug against the hydrolytic process in darkness. However, it accelerated the drug decomposition by photolysis in light conditions. According to the pH stability profile, βLAP undergoes an alkaline hydrolysis, its maximum stability pH being over the range 2-4.. These studies provide useful information regarding the optimal storage conditions and formulations of βLAP. Topics: beta-Cyclodextrins; Darkness; Drug Stability; Drug Storage; Humidity; Hydrogen-Ion Concentration; Hydrolysis; Light; Naphthoquinones; Photolysis; Solutions | 2013 |
The encapsulation of β-lapachone in 2-hydroxypropyl-β-cyclodextrin inclusion complex into liposomes: a physicochemical evaluation and molecular modeling approach.
The aim of this study was to encapsulate lapachone (β-lap) or inclusion complex (β-lap:HPβ-CD) in liposomes and to evaluate their physicochemical characteristics. In addition, the investigation of the main aspects of the interaction between β-lap and 2-hydroxypropyl-β-cyclodextrin (HPβ-CD), using both experimental and molecular modeling approaches was discussed. Furthermore, the in vitro drug release kinetics was evaluated. First, a phase solubility study of β-lap in HPβ-CD was performed and the β-lap:HPβ-CD was prepared by the freeze-drying technique. A 302-fold increase of solubility was achieved for β-lap in HPβ-CD solution with a constant of association K(1:1) of 961 M(-1) and a complexation efficiency of β-lap of 0.1538. (1)H NMR, TG, DSC, IR, Raman and SEM indicated a change in the molecular environment of β-lap in the inclusion complex. Molecular modeling confirms these results suggesting that β-lap was included in the cavity of HPβ-CD, with an intermolecular interaction energy of -23.67 kJ mol(-1). β-lap:HPβ-CD and β-lap-loaded liposomes presented encapsulation efficiencies of 93% and 97%, respectively. The kinetic rate constants of 183.95±1.82 μg/h and 216.25±2.34 μg/h were calculated for β-lap and β-lap:HPβ-CD-loaded liposomes, respectively. In conclusion, molecular modeling elucidates the formation of the inclusion complex, stabilized through hydrogen bonds, and the encapsulation of β-lap and β-lap:HPβ-CD into liposomes could provide an alternative means leading eventually to its use in cancer research. Topics: 2-Hydroxypropyl-beta-cyclodextrin; Adjuvants, Pharmaceutic; beta-Cyclodextrins; Drug Compounding; Freeze Drying; Liposomes; Microscopy, Electron, Scanning; Models, Molecular; Molecular Structure; Naphthoquinones; Phase Transition; Solubility; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis, Raman; Surface Properties | 2011 |
Characterization of beta-lapachone and methylated beta-cyclodextrin solid-state systems.
The purpose of this research was to explore the utility of beta cyclodextrin (betaCD) and beta cyclodextrin derivatives (hydroxypropyl-beta-cyclodextrin [HPbetaCD], sulfobutylether-beta-CD [SBbetaCD], and a randomly methylated-beta-CD [RMbetaCD]) to form inclusion complexes with the antitumoral drug, beta-lapachone (betaLAP), in order to overcome the problem of its poor water solubility. RMbetaCD presented the highest efficiency for betaLAP solubilization and was selected to develop solid-state binary systems. Differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), Fourier transform infrared (FTIR) and optical and scanning electron microscopy results suggest the formation of inclusion complexes by both freeze-drying and kneading techniques with a dramatic improvement in drug dissolution efficiency at 20-minute dissolution efficiency (DE(20-minute) 67.15% and 88.22%, respectively) against the drug (DE(20-minute) 27.11%) or the betaCD/drug physical mixture (DE(20-minute) 27.22%). However, the kneading method gives a highly crystalline material that together with the adequate drug dissolution profile make it the best procedure in obtaining inclusion complexes of RMbetaCD/betaLAP convenient for different applications of betaLAP. Topics: 2-Hydroxypropyl-beta-cyclodextrin; beta-Cyclodextrins; Calorimetry, Differential Scanning; Cyclodextrins; Microscopy, Electron, Scanning; Naphthoquinones; Solubility; Spectroscopy, Fourier Transform Infrared; X-Ray Diffraction | 2007 |
Enhancement of solubility and bioavailability of beta-lapachone using cyclodextrin inclusion complexes.
To explore the use of cyclodextrins (CD) to form inclusion complexes with beta-lapachone (beta-lap) to overcome solubility and bioavailability problems previously noted with this drug.. Inclusion complexes between beta-lap and four cyclodextrins (alpha-, beta-, gamma-, and HPbeta-CD) in aqueous solution were investigated by phase solubility studies, fluorescence, and 1H-NMR spectroscopy. Biologic activity and bioavailability of beta-lap inclusion complexes were investigated by in vitro cytotoxicity studies with MCF-7 cells and by in vivo lethality studies with C57Blk/6 mice (18-20 g).. Phase solubility studies showed that beta-lap solubility increased in a linear fashion as a function of alpha-, beta-, or HPbeta-CD concentrations but not gamma-CD. Maximum solubility of beta-lap was achieved at 16.0 mg/ml or 66.0 mM with HPbeta-CD. Fluorescence and 1H-NMR spectroscopy proved the formation of 1:1 inclusion complexes between beta-CD and HPbeta-CD with beta-lap. Cytotoxicity assays with MCF-7 cells showed similar biologic activities of beta-lap in beta-CD or HPbeta-CD inclusion complexes (TD50 = 2.1 microM). Animal studies in mice showed that the LD50 value of beta-lap in an HPbeta-CD inclusion complex is between 50 and 60 mg/kg.. Complexation of beta-lap with HPbeta-CD offers a major improvement in drug solubility and bioavailability. Topics: 2-Hydroxypropyl-beta-cyclodextrin; Adjuvants, Pharmaceutic; alpha-Cyclodextrins; Animals; beta-Cyclodextrins; Biological Availability; Cyclodextrins; gamma-Cyclodextrins; Humans; Injections, Intraperitoneal; Lethal Dose 50; Mice; Mice, Inbred C57BL; Naphthoquinones; Solubility; Tumor Cells, Cultured | 2003 |