betadex and 6-hydroxy-2-5-7-8-tetramethylchroman-2-carboxylic-acid

betadex has been researched along with 6-hydroxy-2-5-7-8-tetramethylchroman-2-carboxylic-acid* in 3 studies

Other Studies

3 other study(ies) available for betadex and 6-hydroxy-2-5-7-8-tetramethylchroman-2-carboxylic-acid

ArticleYear
Solubilisation of a 2,2-diphenyl-1-picrylhydrazyl radical in water by β-cyclodextrin to evaluate the radical-scavenging activity of antioxidants in aqueous media.
    Chemical communications (Cambridge, England), 2015, May-14, Volume: 51, Issue:39

    A 2,2-diphenyl-1-picrylhydrazyl radical (DPPH˙) was successfully solubilised in water by β-cyclodextrin (β-CD). DPPH˙/β-CD thus obtained was demonstrated to be a powerful tool to evaluate the antioxidative activity of water-soluble antioxidants, such as ascorbate and Trolox, in aqueous buffer solutions.

    Topics: Ascorbic Acid; beta-Cyclodextrins; Biphenyl Compounds; Chromans; Free Radical Scavengers; Free Radicals; Picrates; Solubility; Water

2015
Simultaneous total antioxidant capacity assay of lipophilic and hydrophilic antioxidants in the same acetone-water solution containing 2% methyl-beta-cyclodextrin using the cupric reducing antioxidant capacity (CUPRAC) method.
    Analytica chimica acta, 2008, Dec-07, Volume: 630, Issue:1

    Antioxidants are health beneficial compounds that can protect cells from the damage caused by unstable molecules known as reactive oxygen species (ROS). This work reports the capacity assay of both lipophilic and hydrophilic antioxidants simultaneously, by making use of their 'host-guest' complexes with methyl-beta-cyclodextrin (M-beta-CD), a cyclic oligosaccharide, in acetonated aqueous medium using the cupric reducing antioxidant capacity (CUPRAC) method. Thus the order of antioxidant potency of various compounds irrespective of their lipophilicity could be established in the same solvent medium. M-beta-CD was introduced as the water solubility enhancer for lipophilic antioxidants. Two percent M-beta-CD (w/v) in an acetone-H(2)O (9:1, v/v) mixture was found to sufficiently solubilize beta-carotene, lycopene, vitamin E, vitamin C, synthetic antioxidants and other phenolic antioxidants. This assay was validated through linearity, additivity, precision, and recovery. The validation results demonstrate that the CUPRAC assay is reliable and robust. In acetonated aqueous solution of M-beta-CD, only CUPRAC and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays were capable of measuring carotenoids together with hydrophilic antioxidants. The CUPRAC antioxidant capacities of a wide range of polyphenolics and flavonoids were experimentally reported in this work as trolox equivalent antioxidant capacity (TEAC) in the CUPRAC assay, and compared to those found by reference methods, ABTS/horseradish peroxidase (HRP)-H(2)O(2) and ferric reducing antioxidant power (FRAP) assays.

    Topics: Acetone; Antioxidants; beta-Cyclodextrins; Carotenoids; Chromans; Copper; Indicators and Reagents; Phenols; Solubility; Solutions; Vitamins; Water

2008
Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the solubility enhancer.
    Journal of agricultural and food chemistry, 2002, Mar-27, Volume: 50, Issue:7

    We recently reported the improved oxygen radical absorbance capacity (ORAC) assay using fluorescein (FL) as the fluorescent probe. The current ORAC(FL) assay is limited in hydrophilic antioxidant due to the aqueous environment of the assay. Lipophilic antioxidants mainly include the vitamin E family and carotenoids, which play a critical role in biological defense systems. In this paper, we expanded the current ORAC(FL) assay to lipophilic antioxidants. Randomly methylated beta-cyclodextrin (RMCD) was introduced as the water solubility enhancer for lipophilic antioxidants. Seven percent RMCD (w/v) in a 50% acetone-H(2)O mixture was found to sufficiently solubilize vitamin E compounds and other lipophilic phenolic antioxidants in 75 mM phosphate buffer (pH 7.4). This newly developed ORAC assay (abbbreviated ORAC(FL-LIPO)) was validated through linearity, precision, accuracy, and ruggedness. The validation results demonstrate that the ORAC(FL-LIPO) assay is reliable and robust. For the first time, by using 6-hydroxy-2,5,7,8-tetramethyl-2-carboxylic acid as a standard (1.0), the ORAC values of alpha-tocopherol, (+)-gamma-tocopherol, (+)-delta-tocopherol, alpha-tocopherol acetate, tocotrienols, 2,6-di-tert-butyl-4-methylphenol, and gamma-oryzanol were determined to be 0.5 +/- 0.02, 0.74 +/- 0.03, 1.36 +/- 0.14, 0.00, 0.91 +/- 0.04, 0.16 +/- 0.01, and 3.00 +/- 0.26, respectively. The structural information of oxidized alpha-tocopherol obtained by liquid chromatography/mass spectrometry reveals that the mechanism for the reaction between the vitamin E and the peroxyl radical follows the hydrogen atom transfer mechanism, which is in agreement with the notion that vitamin E is the chain-breaking antioxidant.

    Topics: alpha-Tocopherol; Amidines; Antioxidants; beta-Cyclodextrins; Binding, Competitive; Chromans; Chromatography, Liquid; Cyclodextrins; Fluorescein; Fluorescent Dyes; Free Radicals; Indicators and Reagents; Lipid Metabolism; Mass Spectrometry; Methylation; Oxygen Compounds; Peroxides; Sensitivity and Specificity; Solubility

2002