betadex and 4-vinylpyridine

betadex has been researched along with 4-vinylpyridine* in 2 studies

Other Studies

2 other study(ies) available for betadex and 4-vinylpyridine

ArticleYear
Preparation of core-shell magnetic molecular imprinted polymer with binary monomer for the fast and selective extraction of bisphenol A from milk.
    Journal of chromatography. A, 2016, Sep-02, Volume: 1462

    In the current study, a new strategy for the extraction of bisphenol A (BPA) from milk has been employed by using surface-imprinted core-shell magnetic beads, prepared by the reversible addition-fragmentation chain transfer (RAFT) polymerization. In order to obtain highly selective recognition cavities, an enhanced imprinting method based on binary functional monomers, e.g. 4-vinylpyridine (4-VP) and β-cyclodextrin (β-CD), was chosen for BPA imprinting. The morphological and magnetic properties of the Fe3O4-MIP beads were characterized by Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FT-IR) Spectroscopy, Thermogravimetric Analysis (TGA), and Vibrating Sample Magnetometer (VSM). The characterization results suggested that MIP was synthesized evenly on Fe3O4-SiO2 surface. The adsorption experiments revealed that Fe3O4-MIPs showed better extraction capacity and selectivity toward BPA and its analogues than the non-imprinted polymers (NIPs). The saturation capacity of Fe3O4-MIP was 17.98mg/g. In milk samples, the present method displayed a lower the detection thresholds, down to 3.7μg/L. The recoveries of BPA in milk samples for three concentrations were found to be within 99.21%, 98.07% and 97.23%, respectively to three concentrations: 1.0μmol/L, 10.0mol/L, 100.0μmol/L. Thus, the MIPs can be used for remove BPA in milk samples.

    Topics: Adsorption; Animals; Benzhydryl Compounds; beta-Cyclodextrins; Ferric Compounds; Magnetics; Microscopy, Electron, Transmission; Milk; Molecular Imprinting; Phenols; Polymerization; Polymers; Pyridines; Silicon Dioxide; Spectroscopy, Fourier Transform Infrared

2016
Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine and β-cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues.
    Journal of chromatography. A, 2010, Nov-19, Volume: 1217, Issue:47

    Auxin is a crucial phytohormone for precise control of growth and development of plants. Due to its low concentration in plant tissues which are rich in interfering substances, the accurate determination of auxins remains a challenge. In this paper, a new strategy for isolation and enrichment of auxins from plant tissues was obtained by the magnetic molecularly imprinted polymer (mag-MIP) beads, which were prepared by microwave heating initiated suspension polymerization using indole-3-acetic acid (IAA) as template. In order to obtain higher selective recognition cavities, an enhanced imprinting method based on binary functional monomers, 4-vinylpyridine (4-VP) and β-cyclodextrin (β-CD), was adopted for IAA imprinting. The morphological and magnetic characteristics of the mag-MIP beads were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy and vibrating sample magnetometry. A majority of resultant beads were within the size range of 80-150μm. Porous surface morphology and good magnetic property were observed. Furthermore, the mag-MIP beads fabricated with 4-VP and β-CD as binary functional monomers exhibited improved recognition ability to IAA, as compared with the mag-MIP beads prepared with the individual monomer separately. Competitive rebinding experiment results revealed that the mag-MIP beads exhibited a higher specific recognition for the template than the non-imprinted polymer (mag-NIP) beads. An extraction method by mag-MIP beads coupled with high performance liquid chromatography (HPLC) was developed for determination of IAA and indole-3-butyric acid (IBA) in plant tissues. Linear ranges for IAA and IBA were in the range of 7.00-100.0μgL(-1) and 10.0-100.0μgL(-1), and the detection limits were 3.9 and 7.4μgL(-1), respectively. The analytical performance was also estimated by seedlings or immature embryos samples from three different plant tissues, pea, rice and wheat. Recoveries were in the range of 70.1-93.5%. The results show that the present imprinting method is a promising approach for preparation of selective adsorbents for sample preparation of auxin analysis in plant tissues.

    Topics: beta-Cyclodextrins; Chromatography, High Pressure Liquid; Indoleacetic Acids; Microwaves; Molecular Imprinting; Plants; Polymers; Pyridines

2010