betadex and 2-2--azino-di-(3-ethylbenzothiazoline)-6-sulfonic-acid

betadex has been researched along with 2-2--azino-di-(3-ethylbenzothiazoline)-6-sulfonic-acid* in 2 studies

Other Studies

2 other study(ies) available for betadex and 2-2--azino-di-(3-ethylbenzothiazoline)-6-sulfonic-acid

ArticleYear
Research on Characteristics, Antioxidant and Antitumor Activities of Dihydroquercetin and Its Complexes.
    Molecules (Basel, Switzerland), 2017, Dec-22, Volume: 23, Issue:1

    Dihydroquercetin is a kind of dihydroflavonol compounds with antioxidant, antitumor, antivirus and radioresistance activities. This study attempted to produce the dihydroquercetin complexes with lecithin and β-cyclodextrin, and research their characteristics and bioactivities via ultraviolet spectrum (UV), infrared spectroscopy (IR), scanning electron microscope (SEM), differential scanning calorimetry (DSC), X-ray diffraction spectrum (XRD), and MTT assay. Results showed that the complexes with lecithin and β-cyclodextrin could improve the solubility and dissolution rate, and remove the characteristic endothermic peak of dihydroquercetin. IR spectra proved their interaction, and results of SEM and XRD showed the amorphous characteristics of the dihydroquercetin compounds. These results indicated that dihydroquercetin was combined by lecithin or β-cyclodextrin with better physical and chemical properties, which would effectively improve the application value in the food and drug industries.

    Topics: Antineoplastic Agents; Antioxidants; Benzothiazoles; beta-Cyclodextrins; Biphenyl Compounds; Cell Survival; Hep G2 Cells; Humans; Lecithins; Picrates; Quercetin; Solubility; Structure-Activity Relationship; Sulfonic Acids

2017
Preparation of hydrophilic C60(OH)10/2-hydroxypropyl-β-cyclodextrin nanoparticles for the treatment of a liver injury induced by an overdose of acetaminophen.
    Biomaterials, 2015, Volume: 45

    Stable hydrophilic C60(OH)10 nanoparticles were prepared from 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and applied to the treatment of an acetaminophen overdose induced liver Injury. C60(OH)10 nanoparticles were produced by cogrinding α-CD, β-CD, γ-CD and HP-β-CD and characterized in terms of solubility, mean particle diameter, ζ-potential and long term dispersibility in water. Hydrophilic C60(OH)10 nanoparticles with particle sizes less than 50 nm were effectively produced by cogrinding HP-β-CD with C60(OH)10 at a molar ratio of 1:3 (C60(OH)10:CD). The resulting C60(OH)10/HP-β-CD nanoparticles were stable in water and showed no aggregation over a 1 month period. The C60(OH)10/CDs nanoparticles scavenged not only free radicals (DPPH and ABTS radicals) but also reactive oxygen species (O2(•-) and •OH). When C60(OH)10/HP-β-CD nanoparticles were intraperitoneally administered to mice with a liver injury induced by an overdose of acetaminophen (APAP), the ALT and AST levels were markedly reduced to almost the same level as that for normal mice. Furthermore, the administration of the nanoparticles prolonged the survival rate of liver injured mice, while all of the mice that were treated with APAP died within 40 h. To reveal the mechanism responsible for liver protection by C60(OH)10 nanoparticles, GSH level, CYP2E1 expression and peroxynitrite formation in the liver were assessed. C60(OH)10/HP-β-CD nanoparticles had no effect on CYP2E1 expression and GSH depletion, but suppressed the generation of peroxynitrite in the liver. The findings indicate that the protective effect of C60(OH)10/HP-β-CD nanoparticles was due to the suppression of oxidative stress in mitochondria, as the result of scavenging ROS such as O2(•-), NO and peroxynitrite, which act as critical mediators in the liver injuries.

    Topics: 2-Hydroxypropyl-beta-cyclodextrin; Acetaminophen; Animals; Antioxidants; Benzothiazoles; beta-Cyclodextrins; Biphenyl Compounds; Chemical and Drug Induced Liver Injury; Cytochrome P-450 CYP2E1; Drug Overdose; Electron Spin Resonance Spectroscopy; Free Radical Scavengers; Fullerenes; Glutathione; Hydrophobic and Hydrophilic Interactions; Hydroxylation; Liver; Male; Mice, Inbred C57BL; Nanoparticles; Nitric Oxide; Oxidative Stress; Particle Size; Peroxynitrous Acid; Picrates; Protective Agents; Solubility; Static Electricity; Sulfonic Acids; Tyrosine

2015
chemdatabank.com