betadex has been researched along with 18-crown-6-2-3-11-12-tetracarboxylic-acid* in 2 studies
2 other study(ies) available for betadex and 18-crown-6-2-3-11-12-tetracarboxylic-acid
Article | Year |
---|---|
Enantiomeric separation of some common controlled stimulants by capillary electrophoresis with contactless conductivity detection.
CE methods with capacitively coupled contactless conductivity detection (C(4)D) were developed for the enantiomeric separation of the following stimulants: amphetamine (AP), methamphetamine (MA), ephedrine (EP), pseudoephedrine (PE), norephedrine (NE) and norpseudoephedrine (NPE). Acetic acid (pH 2.5 and 2.8) was found to be the optimal background electrolyte for the CE-C(4)D system. The chiral selectors, carboxymethyl-β-cyclodextrin (CMBCD), heptakis(2,6-di-O-methyl)-β-cyclodextrin (DMBCD) and chiral crown ether (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (18C6H(4)), were investigated for their enantioseparation properties in the BGE. The use of either a single or a combination of two chiral selectors was chosen to obtain optimal condition of enantiomeric selectivity. Enantiomeric separation of AP and MA was achieved using the single chiral selector CMBCD and (hydroxypropyl)methyl cellulose (HPMC) as the modifier. A combination of the two chiral selectors, CMBCD and DMBCD and HPMC as the modifier, was required for enantiomeric separation of EP and PE. In addition, a combination of DMBCD and 18C6H(4) was successfully applied for the enantiomeric separation of NE and NPE. The detection limits of the enantiomers were found to be in the range of 2.3-5.7 μmol/L. Good precisions of migration time and peak area were obtained. The developed CE-C(4)D method was successfully applied to urine samples of athletes for the identification of enantiomers of the detected stimulants. Topics: Acetic Acid; Amphetamines; beta-Cyclodextrins; Central Nervous System Stimulants; Crown Ethers; Electric Conductivity; Electrophoresis, Capillary; Humans; Limit of Detection; Propanolamines; Reproducibility of Results; Stereoisomerism | 2012 |
Chiral differentiation of some cyclopentane and cyclohexane beta-amino acid enantiomers through ion/molecule reactions.
Chiral differentiation of four enantiomeric pairs of beta-amino acids, cis-(1R,2S)-, cis-(1S,2R)-, trans-(1R,2R)-, and trans-(1S,2S)-2-aminocyclopentanecarboxylic acids (cyclopentane beta-amino acids), and cis-(1R,2S)-, cis-(1S,2R)-, trans-(1R,2R)-, and trans-(1S,2S)-2-aminocyclohexanecarboxylic acids (cyclohexane beta-amino acids) was performed successfully by using host-guest complexes and ion/molecule reactions. The experiments were conducted by using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The effect of a chiral host molecule was tested by using three different host compounds; (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic acid, (-)-(18-Crown-6)-2,3,11,12-tetracarboxylic acid, and beta-cyclodextrin. This is the first time that small enantiomeric pairs with two chiral centers have been differentiated using ion/molecule reactions and host-guest complexes. Topics: Amino Acids; beta-Cyclodextrins; Crown Ethers; Cyclohexanes; Cyclopentanes; Ethylamines; Spectrometry, Mass, Electrospray Ionization; Spectroscopy, Fourier Transform Infrared; Stereoisomerism | 2009 |