Page last updated: 2024-09-04

beta-lactams and cysteine

beta-lactams has been researched along with cysteine in 13 studies

Compound Research Comparison

Studies
(beta-lactams)
Trials
(beta-lactams)
Recent Studies (post-2010)
(beta-lactams)
Studies
(cysteine)
Trials
(cysteine)
Recent Studies (post-2010) (cysteine)
7,5791793,39540,13241811,457

Research

Studies (13)

TimeframeStudies, this research(%)All Research%
pre-19903 (23.08)18.7374
1990's1 (7.69)18.2507
2000's2 (15.38)29.6817
2010's4 (30.77)24.3611
2020's3 (23.08)2.80

Authors

AuthorsStudies
Abraham, EP; Huddleston, JA1
Berwick, PG1
Aharonowitz, Y; Mendelovitz, S1
Dubus, A; Frère, JM; Jacobs, C; Monnaie, D; Normark, S1
Eriguchi, Y; Haruta, S; Nukaga, M; O'Hara, K; Sawai, T; Yamaguchi, H; Yamamoto, ET1
Critchley, IA; Janjic, N; Jones, RN; Pottumarthy, S; Whittington, WL1
Arthur, M; Bougault, C; Hugonnet, JE; Lecoq, L; Pessey, O; Simorre, JP; Veckerlé, C1
Brown, NG; Horton, LB; Lykissa, E; Mikulski, R; Palzkill, T; Phillips, KJ; Shanker, S; Venkataram Prasad, BV1
Arthur, M; Bougault, C; Dubée, V; Hugonnet, JE; Lecoq, L; Simorre, JP; Triboulet, S1
Brem, J; Chan, HTH; de Munnik, M; Kamps, JJAG; Kumar, K; Lohans, CT; Malla, TR; McArdle, DJB; Paton, RS; Schofield, CJ; Spencer, J; Tooke, CL; van Groesen, E1
Bovenberg, RAL; Crismaru, CG; Driessen, AJM; Salo, O; Wu, M1
Bovenberg, RAL; Driessen, AJM; Iacovelli, R; Mózsik, L1
Aslam, H; Brewitz, L; Lukacik, P; Malla, TR; Mikolajek, H; Muntean, DG; Owen, CD; Salah, E; Schofield, CJ; Strain-Damerell, C; Tumber, A; Walsh, MA1

Other Studies

13 other study(ies) available for beta-lactams and cysteine

ArticleYear
The stereochemistry of beta-lactam formation in cephalosporin biosynthesis.
    The Biochemical journal, 1978, Mar-01, Volume: 169, Issue:3

    Topics: Acremonium; beta-Lactams; Cephalosporins; Cysteine; Molecular Conformation; Stereoisomerism

1978
Beta-lactam and aminoglycoside production from streptomycetes.
    The Journal of applied bacteriology, 1988, Volume: 64, Issue:1

    Topics: Anti-Bacterial Agents; beta-Lactams; Culture Media; Cysteine; Neomycin; Spores, Bacterial; Streptomyces; Streptomyces griseus; Streptomycin; Valine

1988
beta-lactam antibiotic production by Streptomyces clavuligerus mutants impaired in regulation of aspartokinase.
    Journal of general microbiology, 1983, Volume: 129, Issue:7

    Topics: Anti-Bacterial Agents; Aspartate Kinase; beta-Lactams; Cysteine; Drug Resistance, Microbial; Lysine; Mutation; Phosphotransferases; Streptomyces; Threonine

1983
A dramatic change in the rate-limiting step of beta-lactam hydrolysis results from the substitution of the active-site serine residue by a cysteine in the class-C beta-lactamase of Enterobacter cloacae 908R.
    The Biochemical journal, 1993, Jun-01, Volume: 292 ( Pt 2)

    Topics: Anti-Bacterial Agents; Base Sequence; beta-Lactamase Inhibitors; beta-Lactamases; beta-Lactams; Binding Sites; Cysteine; Enterobacter cloacae; Hydrogen-Ion Concentration; Hydrolysis; Kinetics; Molecular Sequence Data; Mutagenesis, Site-Directed; Oligodeoxyribonucleotides; Serine

1993
Functional analysis of the active site of a metallo-beta-lactamase proliferating in Japan.
    Antimicrobial agents and chemotherapy, 2000, Volume: 44, Issue:9

    Topics: Anti-Bacterial Agents; Apoenzymes; Aspartic Acid; beta-Lactam Resistance; beta-Lactamases; beta-Lactams; Binding Sites; Binding, Competitive; Cysteine; Dose-Response Relationship, Drug; Escherichia coli; Histidine; Humans; Japan; Kinetics; Klebsiella pneumoniae; Ligands; Microbial Sensitivity Tests; Mutagenesis, Site-Directed; Zinc

2000
Activity of faropenem tested against Neisseria gonorrhoeae isolates including fluoroquinolone-resistant strains.
    Diagnostic microbiology and infectious disease, 2005, Volume: 53, Issue:4

    Topics: Anti-Bacterial Agents; beta-Lactams; Cysteine; Drug Antagonism; Drug Resistance, Bacterial; Fluoroquinolones; Gonorrhea; Humans; Lactams; Microbial Sensitivity Tests; Neisseria gonorrhoeae; United States

2005
Dynamics induced by β-lactam antibiotics in the active site of Bacillus subtilis L,D-transpeptidase.
    Structure (London, England : 1993), 2012, May-09, Volume: 20, Issue:5

    Topics: Anti-Bacterial Agents; Bacillus subtilis; Bacterial Proteins; beta-Lactams; Catalytic Domain; Cysteine; Molecular Dynamics Simulation; Nitrobenzoates; Nuclear Magnetic Resonance, Biomolecular; Peptidyl Transferases; Substrate Specificity; Sulfhydryl Compounds

2012
Mutagenesis of zinc ligand residue Cys221 reveals plasticity in the IMP-1 metallo-β-lactamase active site.
    Antimicrobial agents and chemotherapy, 2012, Volume: 56, Issue:11

    Topics: Amino Acid Substitution; beta-Lactamases; beta-Lactams; Catalytic Domain; Cysteine; Escherichia coli; Glycine; Kinetics; Ligands; Microbial Sensitivity Tests; Models, Molecular; Mutagenesis; Protein Binding; Recombinant Proteins; Water; Zinc

2012
Chemical shift perturbations induced by the acylation of Enterococcus faecium L,D-transpeptidase catalytic cysteine with ertapenem.
    Biomolecular NMR assignments, 2014, Volume: 8, Issue:2

    Topics: Acylation; Amino Acid Sequence; beta-Lactams; Catalytic Domain; Cysteine; Enterococcus faecium; Ertapenem; Molecular Sequence Data; Nuclear Magnetic Resonance, Biomolecular; Peptidyl Transferases

2014
Non-Hydrolytic β-Lactam Antibiotic Fragmentation by l,d-Transpeptidases and Serine β-Lactamase Cysteine Variants.
    Angewandte Chemie (International ed. in English), 2019, 02-11, Volume: 58, Issue:7

    Topics: Anti-Bacterial Agents; beta-Lactamases; beta-Lactams; Cysteine; Molecular Conformation; Peptidyl Transferases

2019
Impact of Classical Strain Improvement of
    Applied and environmental microbiology, 2020, 01-21, Volume: 86, Issue:3

    Topics: Amino Acids; beta-Lactams; Biosynthetic Pathways; Cysteine; Escherichia coli; Microorganisms, Genetically-Modified; Mutation; Penicillins; Penicillium chrysogenum

2020
Identification of a conserved N-terminal domain in the first module of ACV synthetases.
    MicrobiologyOpen, 2021, Volume: 10, Issue:1

    Topics: 2-Aminoadipic Acid; Amino Acid Sequence; Amycolatopsis; Anti-Bacterial Agents; beta-Lactams; Biosynthetic Pathways; Cysteine; Genetic Variation; Penicillium; Peptide Synthases; Protein Domains

2021
Penicillin Derivatives Inhibit the SARS-CoV-2 Main Protease by Reaction with Its Nucleophilic Cysteine.
    Journal of medicinal chemistry, 2022, 06-09, Volume: 65, Issue:11

    Topics: Antiviral Agents; beta-Lactams; Coronavirus 3C Proteases; COVID-19 Drug Treatment; Cysteine; Cysteine Endopeptidases; Humans; Penicillins; Protease Inhibitors; SARS-CoV-2

2022