beta-hederin and thymoquinone

beta-hederin has been researched along with thymoquinone* in 5 studies

Reviews

3 review(s) available for beta-hederin and thymoquinone

ArticleYear
Revisiting pharmacological potentials of Nigella sativa seed: A promising option for COVID-19 prevention and cure.
    Phytotherapy research : PTR, 2021, Volume: 35, Issue:3

    Nigella sativa seed and its active compounds have been historically recognized as an effective herbal panacea that can establish a balanced inflammatory response by suppressing chronic inflammation and promoting healthy immune response. The essential oil and other preparations of N. sativa seed have substantial therapeutic outcomes against immune disturbance, autophagy dysfunction, oxidative stress, ischemia, inflammation, in several COVID-19 comorbidities such as diabetes, cardiovascular disorders, Kawasaki-like diseases, and many bacterial and viral infections. Compelling evidence in the therapeutic efficiency of N. sativa along with the recent computational findings is strongly suggestive of combating emerged COVID-19 pandemic. Also, being an available candidate in nutraceuticals, N. sativa seed oil could be immensely potential and feasible to prevent and cure COVID-19. This review was aimed at revisiting the pharmacological benefits of N. sativa seed and its active metabolites that may constitute a potential basis for developing a novel preventive and therapeutic strategy against COVID-19. Bioactive compounds of N. sativa seed, especially thymiquinone, α-hederin, and nigellidine, could be alternative and promising herbal drugs to combat COVID-19. Preclinical and clinical trials are required to delineate detailed mechanism of N. sativa's active components and to investigate their efficacy and potency under specific pathophysiological conditions of COVID-19.

    Topics: Benzoquinones; COVID-19 Drug Treatment; Diabetes Mellitus; Dietary Supplements; Humans; Nigella sativa; Oleanolic Acid; Pandemics; Plant Extracts; Saponins; Seeds

2021
The effects of Nigella sativa on respiratory, allergic and immunologic disorders, evidence from experimental and clinical studies, a comprehensive and updated review.
    Phytotherapy research : PTR, 2021, Volume: 35, Issue:6

    Nigella sativa (N. sativa) seed had been used traditionally due to several pharmacological effects. The updated experimental and clinical effects of N. sativa and its constituents on respiratory, allergic and immunologic disorders are provided in this comprehensive review article. Various databases including PubMed, Science Direct and Scopus were used. The preventive effects of N. sativa on pulmonary diseases were mainly due to its constituents such as thymoquinone, thymol, carvacrol and alpha-hederin. Extracts and constituents of N. sativa showed the relaxant effect, with possible mechanisms indicating its bronchodilatory effect in obstructive pulmonary diseases. In experimental animal models of different respiratory diseases, the preventive effect of various extracts and constituents of N. sativa was demonstrated by mechanisms such as antioxidant, immunomodulatory and antiinflammatory effects. Bronchodilatory and preventive effects of the plant and its components on asthma, COPD and lung disorders due to exposure to noxious agents as well as on allergic and immunologic disorders were also shown in the clinical studies. Various extracts and constituents of N. sativa showed pharmacological and therapeutic effects on respiratory, allergic and immunologic disorders indicating possible remedy effect of that the plant and its effective substances in treating respiratory, allergic and immunologic diseases.

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Benzoquinones; Cymenes; Humans; Hypersensitivity; Immune System Diseases; Immunologic Factors; Nigella sativa; Oleanolic Acid; Phytotherapy; Plant Extracts; Respiratory Tract Diseases; Saponins; Thymol

2021
Nigella sativa L. and Its Bioactive Constituents as Hepatoprotectant: A Review.
    Current pharmaceutical biotechnology, 2018, Volume: 19, Issue:1

    The pharmacological properties of Nigella sativa L. are well attributed to the presence of bioactive compounds, mainly, thymoquinone (TQ), thymol (THY) and α hederin and their antioxidant effects. TQ, THY and alpha-hederin (α-hederin) provide protection to liver from injury via different mechanisms including inhibition of iron-dependent lipid peroxidation, elevation in total thiol content and (GSH) level, radical scavenging, increasing the activity of quinone reductase, catalase, superoxide dismutase (SOD) and glutathione transferase (GST), inhibition of NF-κB activity and inhibition of both (COX) and (LOX) protects liver from injuries. Review and Conclusion: The main aim of this literature review is to reflect the relevant role of ROS in inducing hepatic diseases and also the preventive role of N. sativa L. in hepatic diseases. The present article is directed towards highlighting the beneficial contribution of researchers to explore the pharmacological actions with therapeutic potential of this precious natural herb and its bioactive compounds pertaining to the hepatoprotective effects. We systematically searched for research literature through well-framed review question and presented the data in the tabular forms for the convenience of the readers. Two hundred and forty-one papers were embodied in this review, oxidative effect and the reactive oxygen species (ROS) are known to be the major causes of many diseases such as hepatic cancer. Many drugs and chemicals have shown to incite oxidative damage by generation of ROS in the body. Therefore, this review intends to focus the role of ROS in liver diseases and the mechanisms through which N. sativa prevents hepatic diseases. The mechanisms by which N. sativa impede progression in chronic liver diseases should be used as a preventive medicine in patients with hepatic disorders.

    Topics: Animals; Antioxidants; Benzoquinones; Humans; Lipid Peroxidation; Liver Diseases; Nigella sativa; Oleanolic Acid; Plant Extracts; Protective Agents; Reactive Oxygen Species; Saponins; Superoxide Dismutase

2018

Other Studies

2 other study(ies) available for beta-hederin and thymoquinone

ArticleYear
The protective effect of α-hederin, the active constituent of Nigella sativa, on tracheal responsiveness and lung inflammation in ovalbumin-sensitized guinea pigs.
    The journal of physiological sciences : JPS, 2015, Volume: 65, Issue:3

    Many investigations have demonstrated the prophylactic effect of Nigella sativa on asthma disease. One of its active constituents is α-hederin. In the present study, the preventive effect of two different concentrations of α-hederin on tracheal responsiveness and lung inflammation in ovalbumin-sensitized guinea pigs was examined. Forty male adult Dunkin-Hartley guinea pigs were randomly divided into the control (C), sensitized (S) and sensitized pretreated groups with thymoquinone (3 mg/kg i.p., S + TQ), low-dose α-hederin (0.3 mg/kg i.p., S + LAH) and high-dose α-hederin (3 mg/kg i.p., S + HAH). The responsiveness of tracheal smooth muscle (TR) to methacholine, histamine and ovalbumin was assessed. Moreover, total and differential white blood cell counts in lung lavage fluid were examined. Compared with the S group, the mean EC50 value in the S + LAH group increased significantly (p < 0.05). The mean EC50 value of histamine contraction in the S + LAH and S + HAH groups was significantly higher than in the S group (p < 0.05). In all pretreated groups, the TR to ovalbumin decreased in comparison to the S group (p < 0.001). Both the S + HAH and S + LAH groups showed significantly decreased TR compared to the S + TQ group (p < 0.01-p < 0.01). Total WBC and eosinophil counts in all pretreated groups decreased significantly in comparison with the S group (0.001-0.01). There was a significant increase in neutrophil, lymphocyte and monocyte counts in the pretreated groups compared to the S group (p < 0.001-p < 0.05). The basophil count in the S + TQ and S + HAH groups was significantly lower than in the S group (p < 0.01-p < 0.05). This study suggested that α-hederin has anti-inflammatory and bronchodilatory effects like thymoquinone.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Benzoquinones; Bronchodilator Agents; Guinea Pigs; Histamine; Male; Methacholine Chloride; Nigella sativa; Oleanolic Acid; Ovalbumin; Plants, Medicinal; Pneumonia; Saponins; Trachea

2015
The Protective Effect of α-Hederin, the Active Constituent of Nigella sativa, on Lung Inflammation and Blood Cytokines in Ovalbumin Sensitized Guinea Pigs.
    Phytotherapy research : PTR, 2015, Volume: 29, Issue:11

    In the present study, the preventive effect of two different concentrations of α-hederin, the active constituent of Nigella sativa, on lung inflammation and blood cytokines in ovalbumin sensitized guinea pigs was examined. Forty eight male adult guinea pigs were divided into control (C), sensitized (S) and sensitized pretreated groups; with thymoquinone (S+TQ), low dose (S+LAH) and high dose of α-hederin (S+HAH) and inhaled fluticasone propionate (S+FP). The lung histopathology and blood levels of IL-4, IFN-γ and IL-17 were assessed. Compared to sensitized animals, all pathological changes improved significantly in pretreated groups (p < 0.001 to p < 0.05). These improvements in α-hederin pretreated groups were similar to S+TQ and S+FP groups except cellular infiltration in S+LAH and S+HAH groups which was lower than S+TQ group (p < 0.05). The blood IL-4 and IL-17 levels in S+HAH groups showed a significant decrease compared to S group (p < 0.05) which were similar to S+TQ and S+FP groups. The level of IFN-γ in S+LAH and S+HAH groups increased significantly compared to S group (p < 0.05) which was higher than S+FP group (p < 0.05). Blood IL-4 in S+HAH group was significantly lower than S+LAH group (p < 0.05). In conclusion, α-hederin could attenuate the lung inflammation and improve the changes of cytokines like thymoquinone and fluticasone in used dosages.

    Topics: Animals; Benzoquinones; Cytokines; Drugs, Chinese Herbal; Fluticasone; Guinea Pigs; Interleukin-17; Interleukin-4; Lung; Male; Nigella sativa; Oleanolic Acid; Ovalbumin; Plant Extracts; Pneumonia; Saponins

2015