beta-funaltrexamine has been researched along with tyrosyl-prolyl-tryptophyl-glycinamide* in 2 studies
2 other study(ies) available for beta-funaltrexamine and tyrosyl-prolyl-tryptophyl-glycinamide
Article | Year |
---|---|
A Tyr-W-MIF-1 analog containing D-Pro2 acts as a selective mu2-opioid receptor antagonist in the mouse.
The antagonistic properties of Tyr-d-Pro-Trp-Gly-NH(2) (d-Pro(2)-Tyr-W-MIF-1), a Tyr-Pro-Trp-Gly-NH(2)(Tyr-W-MIF-1) analog, on the antinociception induced by the mu-opioid receptor agonists Tyr-W-MIF-1, [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), Tyr-Pro-Trp-Phe-NH(2) (endomorphin-1), and Tyr-Pro-Phe-Phe-NH(2) (endomorphin-2) were studied in the mouse paw-withdrawal test. d-Pro(2)-Tyr-W-MIF-1 injected intrathecally (i.t.) had no apparent effect on the thermal nociceptive threshold. d-Pro(2)-Tyr-W-MIF-1 (0.1-0.4 nmol) coadministered i.t. showed a dose-dependent attenuation of the antinociception induced by Tyr-W-MIF-1 without affecting endomorphin- or DAMGO-induced antinociception. However, higher doses of d-Pro(2)-Tyr-W-MIF-1 (0.8-1.2 nmol) significantly attenuated endomorphin-1- or DAMGO-induced antinociception, whereas the antinociception induced by endomorphin-2 was still not affected by d-Pro(2)-Tyr-W-MIF-1. Pretreatment i.t. with various doses of naloxonazine, a mu(1)-opioid receptor antagonist, attenuated the antinociception induced by Tyr-W-MIF-1, endomorphin-1, endomorphin-2, or DAMGO. Judging from the ID(50) values for naloxonazine against the antinociception induced by the mu-opioid receptor agonists, the antinociceptive effect of Tyr-W-MIF-1 is extremely less sensitive to naloxonazine than those of endomorphin-1 or DAMGO. In contrast, endomorphin-2-induced antinociception is extremely sensitive to naloxonazine. The present results clearly suggest that d-Pro(2)-Tyr-W-MIF-1 is the selective antagonist to be identified for the mu(2)-opioid receptor in the mouse spinal cord. d-Pro(2)-Tyr-W-MIF-1 may also discriminate between Tyr-W-MIF-1-induced antinociception and the antinociception induced by endomorphin-1 or DAMGO, all of which show a preference for the mu(2)-opioid receptor in the spinal cord. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Male; Mice; MSH Release-Inhibiting Hormone; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Receptors, Opioid, mu | 2005 |
Intrathecal Tyr-W-MIF-1 produces potent, naloxone-reversible analgesia modulated by alpha 2-adrenoceptors.
Spinal administration of morphine or [D-Ala2,MePhe4,Gly(ol)5)]enkephalin (DAMGO) produces potent, naloxone-reversible analgesia that is modulated by alpha 2-adrenoceptors. Tyr-W-MIF-1 (Tyr-Pro-Trp-Gly-NH2) is a naturally occurring, amidated tetrapeptide that is structurally related to the melanocyte-stimulating hormone release inhibiting factor-1 (MIF-1) family of endogenous peptides. Tyr-W-MIF-1 displays high selectivity for the mu-opioid receptor. We investigated the effect of spinal administration of Tyr-W-MIF-1 on analgesia using the mouse tail-flick assay. Intrathecal (i.t.) administration of Tyr-W-MIF-1 produced a dose-dependent analgesic response, with an ED50 of 0.41 microgram, that was reversed by naloxone. Pretreatment with the mu-opioid receptor-selective antagonist beta-funaltrexamine blocked the effect of i.t. Tyr-W-MIF-1. However, pretreatment with the mu1-opioid receptor-selective antagonist naloxonazine did not antagonize the analgesia, indicating the effect was mediated through spinal mu2-opioid receptors. Pretreatment with desipramine, an inhibitor of norepinephrine reuptake, potentiated the analgesic effect of i.t. Tyr-W-MIF-1, producing a 3.1-fold leftward shift in the dose-response curve. Spinal administration of yohimbine, an alpha 2-adrenoceptor-selective antagonist, significantly attenuated the analgesic effect of Tyr-W-MIF-1. Thus, the potent analgesic effect of i.t. Tyr-W-MIF-1 is mediated through spinal mu2-receptors, and is modulated by norepinephrine and alpha 2-adrenoceptors. Topics: Adrenergic alpha-Agonists; Adrenergic alpha-Antagonists; Adrenergic Uptake Inhibitors; Amino Acid Sequence; Animals; Desipramine; Dose-Response Relationship, Drug; Injections, Spinal; Male; Mice; Molecular Sequence Data; MSH Release-Inhibiting Hormone; Naloxone; Naltrexone; Narcotic Antagonists; Norepinephrine; Receptors, Adrenergic, alpha-2; Yohimbine | 1996 |