beta-funaltrexamine and senktide

beta-funaltrexamine has been researched along with senktide* in 1 studies

Other Studies

1 other study(ies) available for beta-funaltrexamine and senktide

ArticleYear
Ameliorative effects of tachykinins on scopolamine-induced impairment of spontaneous alternation performance in mice.
    Methods and findings in experimental and clinical pharmacology, 1998, Volume: 20, Issue:7

    The present study was designed to clarify whether opioid neuronal systems are involved in the beneficial effects of tachykinins such as the neurokinin NK1 receptor agonist, substance P (SP), the neurokinin NK2 receptor agonist, neurokinin A (NKA), and the neurokinin NK3 receptor agonist, senktide, on the scopolamine-induced impairment of spontaneous alternation performance in mice. Intracerebroventricular injections of SP (0.1 microgram), NKA (0.3 microgram) and senktide (3 ng) inhibited the scopolamine (1 mg/kg)-induced impairment of spontaneous alternation performance without influencing total arm entries, indicating the antiamnesic effects of tachykinins. Furthermore, the inhibitory effects of SP, but not those of NKA or senktide, were almost completely reversed by pretreatment with naloxone (1 mg/kg). However, the effects of SP on the scopolamine-induced impairment of spontaneous alternation performance were not influenced by pretreatment with the mu-opioid receptor antagonist, beta-funaltrexamine (5 micrograms), the delta-opioid receptor antagonist, naltrindole (4 ng), and the kappa-opioid receptor antagonist, nor-binaltorphimine (4 micrograms). These findings suggest that the effects of SP, unlike those of NKA or senktide, on the scopolamine-induced impairment of spontaneous alternation performance associated with spatial working memory are not mediated simply via a single type of opioid receptors, such as mu, delta or kappa.

    Topics: Animals; Male; Mice; Muscarinic Antagonists; Naloxone; Naltrexone; Narcotic Antagonists; Neurokinin A; Peptide Fragments; Psychomotor Performance; Scopolamine; Substance P; Tachykinins

1998