beta-carotene has been researched along with linsidomine* in 2 studies
2 other study(ies) available for beta-carotene and linsidomine
Article | Year |
---|---|
Effect of lycopene and beta-carotene on peroxynitrite-mediated cellular modifications.
Peroxynitrite formed by the reaction of superoxide and nitric oxide is a highly reactive species with a role in various pathological processes such as cancer, chronic inflammation, and cardiovascular and neurological diseases. In the present study, the effect of the carotenoids, lycopene and beta-carotene, on peroxynitrite-mediated modifications in plasmid DNA as well as cellular DNA and proteins were investigated. In pUC18 plasmid DNA, these carotenoids strongly inhibited DNA strand breaks caused by peroxynitrite generated from 3-morpholinosydnonimine (SIN-1). SIN-1 was also used to determine effects on DNA damage and protein tyrosine nitration in Chinese hamster lung fibroblasts. SIN-1 dose-dependently increased nitration of proteins in cells above basal levels as determined by Western blotting. This nitration was inhibited in the presence of the uric acid as well as lycopene. Physiological concentrations (0.31-10 microM) of lycopene and beta-carotene also had protective effects on DNA damage, as measured by the comet assay. Lycopene significantly reduced DNA damage particularly, in the median range of concentrations (2.5 microM). The protective effects of lycopene and beta-carotene could be due to their scavenging of reactive oxygen (ROS) and/or nitrogen species (RNS) as they reduce the amount of intracellular ROS/RNS produced following treatment with SIN-1 by as much as 47.5% and 42.4%, respectively. The results obtained in this study suggest that carotenoids may alleviate some of the deleterious effects of peroxynitrite and possibly other reactive nitrogen species as well in vivo. Topics: Animals; Antioxidants; beta Carotene; Carotenoids; Cell Line; Cell Survival; Comet Assay; Cricetinae; Cricetulus; DNA Damage; Lycopene; Molsidomine; Nitric Oxide Donors; Peroxynitrous Acid; Tyrosine | 2006 |
Effective inhibition by beta-carotene of cellular DNA breaking induced by peroxynitrous acid.
Peroxynitrous acid synthesized by reaction of hydrogen peroxide and nitrite and generated from 3-morpholinosydononimine (SIN-1) induced cellular DNA breaking of human promyelocytic leukemia HL-60 cells in phosphate buffer (pH 7.5) as assessed by alkaline single cell gel electrophoresis (comet) assay and quantification of comet types. Ascorbate and Trolox inhibited cellular DNA breaking induced by peroxynitrous acid, but the concentrations of these antioxidants required for effective inhibition was about 50-fold higher than that of peroxynitrous acid. beta-Carotene protected DNA breaking by peroxynitrous acid in 20% tetrahydrofuran-phosphate buffer (pH 7.5) much more effectively than ascorbate and Trolox. The concentrations of beta-carotene required for effective inhibition was lower than the concentration of peroxynitrous acid. Topics: Antioxidants; Ascorbic Acid; beta Carotene; Chromans; Dimethyl Sulfoxide; DNA; DNA Damage; Dose-Response Relationship, Drug; Electrophoresis, Agar Gel; Free Radical Scavengers; Furans; HL-60 Cells; Humans; Mannitol; Microscopy, Fluorescence; Molsidomine; Nitrous Acid; Peroxynitrous Acid; Solubility; Sorbic Acid; Time Factors | 1999 |