beta-carotene has been researched along with beta-cyclocitral* in 9 studies
1 review(s) available for beta-carotene and beta-cyclocitral
Article | Year |
---|---|
β-Cyclocitral: Emerging Bioactive Compound in Plants.
β-cyclocitral (βCC), a main apocarotenoid of β-carotene, increases plants' resistance against stresses. It has recently appeared as a novel bioactive composite in a variety of organisms from plants to animals. In plants, βCC marked as stress signals that accrue under adverse ecological conditions. βCC regulates nuclear gene expression through several signaling pathways, leading to stress tolerance. In this review, an attempt has been made to summarize the recent findings of the potential role of βCC. We emphasize the βCC biosynthesis, signaling, and involvement in the regulation of abiotic stresses. From this review, it is clear that discussing compound has great potential against abiotic stress tolerance and be used as photosynthetic rate enhancer. In conclusion, this review establishes a significant reference base for future research. Topics: Aldehydes; beta Carotene; Diterpenes; Gene Expression Regulation, Plant; Plants; Stress, Physiological | 2022 |
8 other study(ies) available for beta-carotene and beta-cyclocitral
Article | Year |
---|---|
Natural overexpression of CAROTENOID CLEAVAGE DIOXYGENASE 4 in tomato alters carotenoid flux.
Carotenoids and apocarotenoids function as pigments and flavor volatiles in plants that enhance consumer appeal and offer health benefits. Tomato (Solanum lycopersicum.) fruit, especially those of wild species, exhibit a high degree of natural variation in carotenoid and apocarotenoid contents. Using positional cloning and an introgression line (IL) of Solanum habrochaites "LA1777', IL8A, we identified carotenoid cleavage dioxygenase 4 (CCD4) as the factor responsible for controlling the dark orange fruit color. CCD4b expression in ripe fruit of IL8A plants was ∼8,000 times greater than that in the wild type, presumably due to 5' cis-regulatory changes. The ShCCD4b-GFP fusion protein localized in the plastid. Phytoene, ζ-carotene, and neurosporene levels increased in ShCCD4b-overexpressing ripe fruit, whereas trans-lycopene, β-carotene, and lutein levels were reduced, suggestive of feedback regulation in the carotenoid pathway by an unknown apocarotenoid. Solid-phase microextraction-gas chromatography-mass spectrometry analysis showed increased levels of geranylacetone and β-ionone in ShCCD4b-overexpressing ripe fruit coupled with a β-cyclocitral deficiency. In carotenoid-accumulating Escherichia coli strains, ShCCD4b cleaved both ζ-carotene and β-carotene at the C9-C10 (C9'-C10') positions to produce geranylacetone and β-ionone, respectively. Exogenous β-cyclocitral decreased carotenoid synthesis in the ripening fruit of tomato and pepper (Capsicum annuum), suggesting feedback inhibition in the pathway. Our findings will be helpful for enhancing the aesthetic and nutritional value of tomato and for understanding the complex regulatory mechanisms of carotenoid and apocarotenoid biogenesis. Topics: beta Carotene; Carotenoids; Dioxygenases; Fruit; Solanum lycopersicum; zeta Carotene | 2023 |
The progression of lipid oxidation, β-carotenes degradation and sensory perception of batch-fried sliced sweet potato crisps during storage.
Dee are a unique and rapidly growing part of the global snack food market and are recognised as having distinct sensory properties (taste and texture). In this study, the development of important volatile aroma compounds over storage was evaluated and their chemical origin explained. Sweet potatoes were batch fried in high oleic sunflower oil (HOSO) and subjected to accelerated shelf life testing. Headspace volatiles were analysed using SPME GC-MS and correlated with sensory perception. All the components (sweet potatoes, oil and β-carotene) showed significant degradation after 3 weeks of storage at accelerated conditions (equivalent to 12 weeks in real-time at 25 °C). Marker volatiles associated with lipid oxidation such as hexanal, octanal, pentanal were identified, in addition to norisoprenoids from β-carotene degradation such as β-ionon, 5,6-epoxy-β-ionone, dihydroactinidiolide (DHA) and β-cyclocitral. The most prominent marker of lipid oxidation (hexanal) rapidly increased at week 1, whereas the carotene degradation makers did not rapidly increase until week 3 suggesting a delayed response. The frying temperature during the batch frying process of SPC was also shown to play a significant role in the sensory perception of the product over the shelf life. Overall, the results suggest that tight control of process variables and raw material design may enable extended shelf life and potentially enhanced health credentials for the product. These findings are unique to SPC, but also of value to the wider food industry. Topics: Aldehydes; Benzofurans; beta Carotene; Cooking; Diterpenes; Food Industry; Gas Chromatography-Mass Spectrometry; Hot Temperature; Ipomoea batatas; Lipid Metabolism; Lipids; Norisoprenoids; Odorants; Oxidation-Reduction; Sensation; Sunflower Oil; Taste; Volatile Organic Compounds | 2021 |
Effects of high light and temperature on Microcystis aeruginosa cell growth and β-cyclocitral emission.
Cyanobacteria always massively grow and even occur blooms in summer, with releasing amount of β-cyclocitral. To uncover the effects of summer high irradiance and temperature on cyanobacterial growth and β-cyclocitral emission, the cell growth, reactive oxygen species (ROS) levels, photosynthetic pigment content, chlorophyll fluorescence and β-cyclocitral emission were investigated in Microcystis aeruginosa under high light and temperature. Compared to the control under 50 μmol m Topics: Aldehydes; beta Carotene; Diterpenes; Light; Microcystis; Photosynthesis; Photosystem II Protein Complex; Reactive Oxygen Species; Temperature | 2020 |
Characterization of two Vitis vinifera carotenoid cleavage dioxygenases by heterologous expression in Saccharomyces cerevisiae.
Norisoprenoids are produced from carotenoids under oxidative degradation mediated by carotenoid cleavage dioxygenases (CCDs) and contribute to floral and fruity notes in grape berries and wine. The diversity of CCD substrates and products has been demonstrated by in vitro recombinant proteins extracted from Escherichia coli expressing CCD genes and of in vivo proteins in an E. coli system co-expressing genes for carotenoid synthesis and cleavage. In the current study, VvCCD1 and VvCCD4b were isolated from the cDNA library of Vitis vinifera L. cv. Cabernet Sauvignon and then transformed into carotenoid-accumulating recombinant Saccharomyces cerevisiae strains. The expression of the target genes was monitored during the yeast growth period, and the accumulation of carotenoids and norisoprenoids in the recombinant strains was measured. The results indicated that both of the VvCCDs cleaved β-carotene at the 7, 8 (7', 8') position into β-cyclocitral for the first time. Additionally, the two enzymes also degraded β-carotene at the 9, 10 (9', 10') position to generate β-ionone and cleaved lycopene at the 5, 6 (5', 6') position into 6-methyl-5-hepten-2-one. These findings suggested that the VvCCDs may possess more cleavage characteristics under the eukaryotic expression system in S. cerevisiae than the prokaryotic system in E. coli, which could better explain the biochemical functions of VvCCDs in grape berries. Topics: Aldehydes; beta Carotene; Cloning, Molecular; Dioxygenases; Diterpenes; Gene Library; Plant Proteins; Recombinant Proteins; Saccharomyces cerevisiae; Transformation, Genetic; Vitis | 2019 |
Characteristic oxidation behavior of β-cyclocitral from the cyanobacterium Microcystis.
The cyanobacterium Microcystis produces volatile organic compounds such as β-cyclocitral and 3-methyl-1-butanol. The lysis of cyanobacteria involving the blue color formation has been occasionally observed in a natural environment. In this study, we focused on the oxidation behavior of β-cyclocitral that contributed to the blue color formation in a natural environment and compared β-cyclocitral with a structurally related compound concerning its oxidation, acidification, and lytic behavior. The oxidation products of β-cyclocitral were identified by the addition of β-cyclocitral in water, in which 2,2,6-trimethylcyclohex-1-ene-1-yl formate and 2,2,6-trimethylcyclohexanone were structurally characterized. That is, β-cyclocitral was easily oxidized to produce the corresponding carboxylic acid and the enol ester in water without an oxidizing reagent, suggesting that this oxidation proceeded according to the Baeyer-Villiger oxidation. The oxidation behavior of β-cyclocitral in a laboratory was different from that in the natural environment, in which 2,2,6- trimethylcyclohexanone was detected at the highest amount in the natural environment, whereas the highest amount in the laboratory was β-cyclocitric acid. A comparison of β-cyclocitral with structurally similar aldehydes concerning the lytic behavior of a Microcystis strain and the acidification process indicated that only β-cyclocitral was easily oxidized. Furthermore, it was found that a blue color formation occurred between pH 5.5 and 6.5, suggesting that chlorophyll a and β-carotene are unstable and decomposed, whereas phycocyanin was stable to some extent in this range. The obtained results of the characteristic oxidation behavior of β-cyclocitral would contribute to a better understanding of the cyanobacterial life cycle. Topics: Aldehydes; beta Carotene; Chlorophyll; Chlorophyll A; Color; Diterpenes; Hydrogen-Ion Concentration; Microcystis; Oxidation-Reduction; Pentanols | 2016 |
Overexpression of Crocus carotenoid cleavage dioxygenase, CsCCD4b, in Arabidopsis imparts tolerance to dehydration, salt and oxidative stresses by modulating ROS machinery.
Apocarotenoids modulate vital physiological and developmental processes in plants. These molecules are formed by the cleavage of carotenoids, a reaction catalyzed by a family of enzymes called carotenoid cleavage dioxygenases (CCDs). Apocarotenoids like β-ionone and β-cyclocitral have been reported to act as stress signal molecules during high light stress in many plant species. In Crocus sativus, these two apocarotenoids are formed by enzymatic cleavage of β-carotene at 9, 10 and 7, 8 bonds by CsCCD4 enzymes. In the present study three isoforms of CsCCD4 were subjected to molecular modeling and docking analysis to determine their substrate specificity and all the three isoforms displayed high substrate specificity for β-carotene. Further, expression of these three CsCCD4 isoforms investigated in response to various stresses revealed that CsCCD4a and CsCCD4b exhibit enhanced expression in response to dehydration, salt and methylviologen, providing a clue towards their role in mediating plant defense response. This was confirmed by overexpressing CsCCD4b in Arabidopsis. The transgenic plants developed longer roots and possessed higher number of lateral roots. Further, overexpression of CsCCD4b imparted enhanced tolerance to salt, dehydration and oxidative stresses as was evidenced by higher survival rate, increased relative root length and biomass in transgenic plants as compared to wild type. Transgenic plants also displayed higher activity and expression of reactive oxygen species (ROS) metabolizing enzymes. This indicates that β-ionone and β-cyclocitral which are enzymatic products of CsCCD4b may act as stress signals and mediate reprogramming of stress responsive genes which ultimately leads to plant defense. Topics: Aldehydes; Amino Acid Sequence; Arabidopsis; Base Sequence; beta Carotene; Carotenoids; Crocus; Dehydration; Dioxygenases; Diterpenes; Models, Structural; Molecular Docking Simulation; Norisoprenoids; Oxidative Stress; Phylogeny; Plant Proteins; Plants, Genetically Modified; Reactive Oxygen Species; Sequence Analysis, DNA; Sodium Chloride | 2015 |
New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus.
Apocarotenoid compounds play diverse communication functions in plants, some of them being as hormones, pigments and volatiles. Apocarotenoids are the result of enzymatic cleavage of carotenoids catalyzed by carotenoid cleavage dioxygenase (CCD). The CCD4 family is the largest family of plant CCDs, only present in flowering plants, suggesting a functional diversification associated to the adaptation for specific physiological capacities unique to them. In saffron, two CCD4 genes have been previously isolated from the stigma tissue and related with the generation of specific volatiles involved in the attraction of pollinators. The aim of this study was to identify additional CCD4 members associated with the generation of other carotenoid-derived volatiles during the development of the stigma. The expression of CsCCD4c appears to be restricted to the stigma tissue in saffron and other Crocus species and was correlated with the generation of megastigma-4,6,8-triene. Further, CsCCD4c was up-regulated by wounding, heat, and osmotic stress, suggesting an involvement of its apocarotenoid products in the adaptation of saffron to environmental stresses. The enzymatic activity of CsCCD4c was determined in vivo in Escherichia coli and subsequently in Nicotiana benthamiana by analyzing carotenoids by HPLC-DAD and the volatile products by GC/MS. β-Carotene was shown to be the preferred substrate, being cleaved at the 9,10 (9',10') bonds and generating β-ionone, although β-cyclocitral resulting from a 7,8 (7',8') cleavage activity was also detected at lower levels. Lutein, neoxanthin and violaxanthin levels in Nicotiana leaves were markedly reduced when CsCCD4c is over expressed, suggesting that CsCCD4c recognizes these carotenoids as substrates. Topics: Aldehydes; Amino Acid Sequence; beta Carotene; Carotenoids; Crocus; Dioxygenases; Diterpenes; Flowers; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Hot Temperature; Isoenzymes; Lutein; Molecular Sequence Data; Multigene Family; Nicotiana; Norisoprenoids; Osmotic Pressure; Phylogeny; Plant Proteins; Plants, Genetically Modified; Sequence Homology, Amino Acid; Stress, Mechanical; Substrate Specificity; Xanthophylls | 2014 |
Degradation and formation of wood odorant β-cyclocitral during permanganate oxidation.
The effect of permanganate oxidation on the formation and degradation of wood odorant β-cyclocitral in water was investigated. Oxidation experiments were conducted for β-cyclocitral prepared from pure chemicals and extracted from Microcystis aeruginosa. The data were simulated with appropriate kinetic rate models. The formation and degradation of β-cyclocitral during the oxidation of β-carotene were also monitored and modeled. The degradation of β-cyclocitral prepared from pure chemicals followed second-order kinetics with a rate constant of 91.7 ± 2.4M(-1)s(-1), and that of the β-cyclocitral precursor, β-carotene, followed first-order kinetics with a rate constant of 0.0054 ± 0.0004 min(-1). During the oxidation of β-carotene, β-cyclocitral was produced. The formation and degradation can both be simulated by first-order kinetics with respect to β-carotene and β-cyclocitral concentrations, respectively. The degradation rate of β-cyclocitral produced from β-carotene was found to be much slower than that for β-cyclocitral obtained from pure chemicals, very likely due to a mass transfer limitation. The kinetic models were further employed to simulate the oxidation of β-cyclocitral in the presence of β-carotene and for β-cyclocitral extracted from M. aeruginosa, respectively. The models well predict/fit the experimental data, with rate constants similar to other experiments, indicating that the models may be used for simulating the formation and degradation of β-cyclocitral in water treatment systems. Topics: Aldehydes; beta Carotene; Diterpenes; Kinetics; Manganese Compounds; Microcystis; Oxidation-Reduction; Oxides; Wood | 2011 |