bergamottin has been researched along with epoxybergamottin* in 3 studies
3 other study(ies) available for bergamottin and epoxybergamottin
Article | Year |
---|---|
Content evaluation of 4 furanocoumarin monomers in various citrus germplasms.
Due to the furanocoumarin compounds in the fruit, the production and consumption of grapefruit have been affected in the past decades since the 'grapefruit juice effect' was declared. To provide elite germplasm and obtain knowledge for future citrus breeding programs, the contents of 4 furanocoumarin monomers (FCMs) in the juice sacs from 73 citrus germplasms were evaluated using ultra-performance liquid chromatography. 6',7'-Dihydroxybergamottin and bergamottin were dominant in all the tested grapefruits, while there were some pomelos with dominant epoxybergamottin, and some with dominant 6',7'-dihydroxybergamottin and bergamottin. The contents of FCMs were low or below detection in sweet oranges, mandarins, lemons and trifoliate oranges. The results also show that the dominant patterns of FCMs are genotype-related, and crossing and selection are effective approaches to alter FCM profiles in citrus breeding. Furthermore, the contribution of pomelo as a parent to grapefruit regarding their FCM profiles was discussed. Topics: Chromatography, High Pressure Liquid; Citrus; Citrus paradisi; Fruit and Vegetable Juices; Furocoumarins | 2015 |
Aspergillus niger metabolism of citrus furanocoumarin inhibitors of human cytochrome P450 3A4.
Fungi metabolize polycyclic aromatic hydrocarbons by a number of detoxification processes, including the formation of sulfated and glycosidated conjugates. A class of aromatic compounds in grapefruit is the furanocoumarins (FCs), and their metabolism in humans is centrally involved in the "grapefruit/drug interactions." Thus far, the metabolism by fungi of the major FCs in grapefruit, including 6', 7'-epoxybergamottin (EB), 6', 7'-dihydroxybergamottin (DHB), and bergamottin (BM), has received little attention. In this study, Aspergillus niger was observed to convert EB into DHB and a novel water-soluble metabolite (WSM). Bergaptol (BT) and BM were also metabolized by A. niger to the WSM, which was identified as BT-5-sulfate using mass spectrometry, UV spectroscopy, chemical hydrolysis, and (1)H and (13)C nuclear magnetic resonance spectroscopy. Similarly, the fungus had a capability of metabolizing xanthotoxol (XT), a structural isomer of BT, to a sulfated analog of BT-5-sulfate, presumably XT-8-sulfate. A possible enzyme-catalyzed pathway for the grapefruit FC metabolism involving the cleavage of the geranyl group and the addition of a sulfate group is proposed. Topics: Aspergillus niger; Citrus paradisi; Furocoumarins; Magnetic Resonance Spectroscopy; Mass Spectrometry; Spectrum Analysis | 2008 |
Grapefruit juice-drug interactions: Grapefruit juice and its components inhibit P-glycoprotein (ABCB1) mediated transport of talinolol in Caco-2 cells.
To investigate the potential interaction between selected ingredients of grapefruit juice and, the transport of talinolol, a P-gp substrate, across Caco-2 cells monolayers was determined in the absence and presence of distinct concentrations of grapefruit juice, bergamottin, 6',7'-dihydroxybergamottin, 6',7'-epoxybergamottin, naringin, and naringenin. Talinolol permeability was selectively inhibited by grapefruit juice and its components. The furano coumarin, 6',7'-epoxybergamottin, was the most potent inhibitor (IC(50) = 0.7 microM), followed by 6',7'-dihydroxybergamottin (IC(50) = 34 microM) and bergamottin that did not show any inhibition at concentrations up to 10 microM. The flavonoid aglycone naringenin was around 10-fold more potent than its glycoside naringin with IC(50) values of 236 and 2409 microM, respectively. The flavonoids and furanocoumarins tested in this study are in the same range of concentration they are present in the juice contributing, therefore, for the overall inhibitory effect of GFJ on P-gp activity. The in vitro data suggest that compounds present in grapefruit juice are able to inhibit the P-gp activity modifying the disposition of drugs that are P-gp substrates such as talinolol. Topics: ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; Beverages; Caco-2 Cells; Citrus paradisi; Dose-Response Relationship, Drug; Flavanones; Food-Drug Interactions; Furocoumarins; Humans; Intestinal Absorption; Intestinal Mucosa; Membrane Transport Modulators; Permeability; Propanolamines | 2007 |