bepridil has been researched along with vanoxerine in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (33.33) | 29.6817 |
2010's | 2 (66.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Fijorek, K; Glinka, A; Mendyk, A; Polak, S; Wiśniowska, B | 1 |
Brown, AM; Bruening-Wright, A; Dittrich, HC; Hawryluk, P; Kramer, J; Obejero-Paz, CA; Tatalovic, M | 1 |
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
3 other study(ies) available for bepridil and vanoxerine
Article | Year |
---|---|
Predictive model for L-type channel inhibition: multichannel block in QT prolongation risk assessment.
Topics: Artificial Intelligence; Calcium Channel Blockers; Calcium Channels, L-Type; Cell Line; Computational Biology; Computer Simulation; Drugs, Investigational; Ether-A-Go-Go Potassium Channels; Expert Systems; Heart Rate; Humans; Models, Biological; Myocytes, Cardiac; NAV1.5 Voltage-Gated Sodium Channel; Potassium Channel Blockers; Quantitative Structure-Activity Relationship; Risk Assessment; Shaker Superfamily of Potassium Channels; Torsades de Pointes; Voltage-Gated Sodium Channel Blockers | 2012 |
Quantitative Profiling of the Effects of Vanoxerine on Human Cardiac Ion Channels and its Application to Cardiac Risk.
Topics: Action Potentials; Animals; Bepridil; CHO Cells; Computer Simulation; Cricetulus; Ether-A-Go-Go Potassium Channels; Heart; HEK293 Cells; Humans; Inhibitory Concentration 50; Ion Channels; Membrane Potentials; Models, Biological; Myocardium; Myocytes, Cardiac; Patch-Clamp Techniques; Phenethylamines; Piperazines; Sulfonamides; Verapamil | 2015 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |