bepridil and prochlorperazine

bepridil has been researched along with prochlorperazine in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (75.00)29.6817
2010's1 (25.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Topliss, JG; Yoshida, F1
Aszalos, A; Ibrahim, S; Knapton, A; Licht, T; Peggins, J1
Bleich, S; Gulbins, E; Kornhuber, J; Reichel, M; Terfloth, L; Tripal, P; Wiltfang, J1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1

Other Studies

4 other study(ies) available for bepridil and prochlorperazine

ArticleYear
QSAR model for drug human oral bioavailability.
    Journal of medicinal chemistry, 2000, Jun-29, Volume: 43, Issue:13

    Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship

2000
Influence of antipsychotic, antiemetic, and Ca(2+) channel blocker drugs on the cellular accumulation of the anticancer drug daunorubicin: P-glycoprotein modulation.
    The Journal of pharmacology and experimental therapeutics, 2000, Volume: 295, Issue:3

    Topics: 3T3 Cells; Animals; Antibiotics, Antineoplastic; Antiemetics; Antipsychotic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; Caco-2 Cells; Calcium Channel Blockers; Daunorubicin; Flow Cytometry; Humans; Mice; Transfection

2000
Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model.
    Journal of medicinal chemistry, 2008, Jan-24, Volume: 51, Issue:2

    Topics: Algorithms; Animals; Cell Line; Cell Line, Tumor; Chemical Phenomena; Chemistry, Physical; Enzyme Inhibitors; Humans; Hydrogen-Ion Concentration; Molecular Conformation; Quantitative Structure-Activity Relationship; Rats; Sphingomyelin Phosphodiesterase

2008
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012