bepridil has been researched along with orphenadrine in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (25.00) | 29.6817 |
2010's | 3 (75.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bleich, S; Gulbins, E; Kornhuber, J; Reichel, M; Terfloth, L; Tripal, P; Wiltfang, J | 1 |
Sen, S; Sinha, N | 1 |
Freiwald, S; Jiang, Y; Jones, JP; Kaspera, R; Katayama, J; Lee, CA; Smith, E; Totah, RA; Walker, GS | 1 |
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
4 other study(ies) available for bepridil and orphenadrine
Article | Year |
---|---|
Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model.
Topics: Algorithms; Animals; Cell Line; Cell Line, Tumor; Chemical Phenomena; Chemistry, Physical; Enzyme Inhibitors; Humans; Hydrogen-Ion Concentration; Molecular Conformation; Quantitative Structure-Activity Relationship; Rats; Sphingomyelin Phosphodiesterase | 2008 |
Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model.
Topics: Computer Simulation; Ether-A-Go-Go Potassium Channels; Humans; Molecular Structure; Organic Chemicals; Quantitative Structure-Activity Relationship | 2011 |
Identifying a selective substrate and inhibitor pair for the evaluation of CYP2J2 activity.
Topics: Amiodarone; Astemizole; Chromatography, High Pressure Liquid; Cytochrome P-450 CYP2J2; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Danazol; Drug Discovery; Drug Interactions; Enzyme Inhibitors; Humans; Hydroxylation; In Vitro Techniques; Methylation; Microsomes, Liver; Models, Biological; Molecular Structure; Substrate Specificity; Tandem Mass Spectrometry; Terfenadine | 2012 |
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |