bepridil has been researched along with hydroxyindoleacetic acid in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (50.00) | 18.2507 |
2000's | 1 (50.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Hiramatsu, M; Komatsu, M; Ueda, Y | 1 |
2 other study(ies) available for bepridil and hydroxyindoleacetic acid
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Free radical scavenging activity of the Japanese herbal medicine toki-shakuyaku-san (TJ-23) and its effect on superoxide dismutase activity, lipid peroxides, glutamate, and monoamine metabolites in aged rat brain.
Topics: 3,4-Dihydroxyphenylacetic Acid; Aging; Amino Acids; Animals; Bepridil; Biogenic Monoamines; Biphenyl Compounds; Brain; Dopamine; Drugs, Chinese Herbal; Electron Spin Resonance Spectroscopy; Free Radical Scavengers; Free Radicals; Glutamic Acid; Homovanillic Acid; Humans; Hydroxyindoleacetic Acid; Hydroxyl Radical; Lipid Peroxides; Methoxyhydroxyphenylglycol; Mice; Neurotransmitter Agents; Norepinephrine; Organ Specificity; Picrates; Plants, Medicinal; Rats; Serotonin; Superoxide Dismutase; Superoxides; Thiobarbituric Acid Reactive Substances | 1996 |