bepridil has been researched along with glyburide in 10 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (20.00) | 18.2507 |
2000's | 6 (60.00) | 29.6817 |
2010's | 2 (20.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Topliss, JG; Yoshida, F | 1 |
Cavalli, A; De Ponti, F; Poluzzi, E; Recanatini, M | 1 |
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Caron, G; Ermondi, G; Visentin, S | 1 |
Sen, S; Sinha, N | 1 |
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
Dong, C; Duffield, R; Ho, AK; Tang, T | 1 |
Arita, M; Li, Y; Sato, T | 1 |
Kang, YY; Kim, JA; Lee, YS | 1 |
10 other study(ies) available for bepridil and glyburide
Article | Year |
---|---|
QSAR model for drug human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship | 2000 |
Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K(+) channel blockers.
Topics: Anti-Arrhythmia Agents; Cation Transport Proteins; Cluster Analysis; Databases, Factual; Ether-A-Go-Go Potassium Channels; Long QT Syndrome; Models, Molecular; Molecular Conformation; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Quantitative Structure-Activity Relationship | 2002 |
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
GRIND-based 3D-QSAR and CoMFA to investigate topics dominated by hydrophobic interactions: the case of hERG K+ channel blockers.
Topics: Ether-A-Go-Go Potassium Channels; Humans; Hydrophobic and Hydrophilic Interactions; Models, Molecular; Potassium Channel Blockers; Quantitative Structure-Activity Relationship | 2009 |
Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model.
Topics: Computer Simulation; Ether-A-Go-Go Potassium Channels; Humans; Molecular Structure; Organic Chemicals; Quantitative Structure-Activity Relationship | 2011 |
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |
Protection of cardiomyocytes by pinacidil during metabolic inhibition and hyperkalemia.
Topics: Adenosine Triphosphate; Animals; Bepridil; Calcium; Calcium Channel Blockers; Cells, Cultured; Chick Embryo; Creatine Kinase; Glyburide; Homeostasis; Hyperkalemia; Myocardium; Pinacidil; Potassium Channels; Potassium Chloride; Sodium-Calcium Exchanger; Verapamil | 1999 |
Bepridil blunts the shortening of action potential duration caused by metabolic inhibition via blockade of ATP-sensitive K(+) channels and Na(+)-activated K(+) channels.
Topics: Action Potentials; Adenosine Triphosphate; Animals; Anti-Arrhythmia Agents; Benzothiazoles; Bepridil; Calcium Channel Blockers; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Dose-Response Relationship, Drug; Glyburide; Guinea Pigs; Heart Ventricles; In Vitro Techniques; Patch-Clamp Techniques; Perfusion; Piperidines; Potassium Channels; Sodium; Thiazoles; Time Factors; Uncoupling Agents | 1999 |
Activation of Na(+), K(+), Cl(-)-cotransport mediates intracellular Ca(2+) increase and apoptosis induced by Pinacidil in HepG2 human hepatoblastoma cells.
Topics: Adenosine Triphosphate; Amiloride; Apoptosis; Bepridil; Bumetanide; Calcium; Carrier Proteins; DNA Fragmentation; Dose-Response Relationship, Drug; Furosemide; Glyburide; Hepatoblastoma; Humans; Pinacidil; Potassium; Potassium Channel Blockers; Potassium Channels; Sodium; Sodium-Calcium Exchanger; Sodium-Potassium-Chloride Symporters; Time Factors; Tolbutamide; Tumor Cells, Cultured | 2001 |