benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone has been researched along with phytosphingosine* in 1 studies
1 other study(ies) available for benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone and phytosphingosine
Article | Year |
---|---|
N,N-Dimethyl phytosphingosine sensitizes HL-60/MX2, a multidrug-resistant variant of HL-60 cells, to doxorubicin-induced cytotoxicity through ROS-mediated release of cytochrome c and AIF.
Doxorubicin (Dox) is widely used to treat a variety of tumors. However, resistance to this drug is common, making successful treatment more difficult. Previously, we introduced a novel phytosphingosine derivative, N,N-dimethyl phytosphingosine (DMPS), as a potent anticancer therapeutic agent in human leukemia cells. This study was performed to investigate whether DMPS can sensitize HL-60/MX2, a multidrug-resistant variant of HL-60, to Dox-induced apoptosis. Low concentrations of DMPS sensitized HL-60/MX2 cells to Dox-induced apoptosis. Combined Dox + DMPS treatment-induced apoptosis was accompanied by the activation of caspase-8 and caspase-3 as well as PARP cleavage. Cytochrome c and AIF release were also observed in Dox + DMPS-treated HL60/MX2 cells. Pretreatment with z-VAD-fmk markedly prevented caspase-3 activation and moderately suppressed apoptosis, suggesting that Dox + DMPS-induced apoptosis is somewhat (not completely) dependent on caspase. Cytochrome c and AIF release were not affected by pretreatment with z-VAD-fmk. The ROS scavenger NAC efficiently suppressed not only ROS generation, but also caspase-3-mediated PARP cleavage, apoptosis, and release of cytochrome c and AIF, indicating a role of ROS in combined Dox + DMPS treatment-induced apoptotic death signaling. Taken together, these observations suggest that DMPS may be used as a therapeutic agent for overcoming drug-resistance in cancer cells by enhancing drug-induced apoptosis. Topics: Acetylcysteine; Amino Acid Chloromethyl Ketones; Antibiotics, Antineoplastic; Antioxidants; Apoptosis Inducing Factor; Caspase Inhibitors; Caspases; Cell Survival; Cysteine Proteinase Inhibitors; Cytochromes c; Doxorubicin; Drug Resistance, Multiple; Enzyme Activation; Free Radical Scavengers; HL-60 Cells; Humans; Mitochondria; Reactive Oxygen Species; Sphingosine | 2010 |