benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone has been researched along with pepstatin* in 6 studies
6 other study(ies) available for benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone and pepstatin
Article | Year |
---|---|
Menadione-induced apoptosis in U937 cells involves Bid cleavage and stefin B degradation.
Earlier studies showed that the oxidant menadione (MD) induces apoptosis in certain cells and also has anticancer effects. Most of these studies emphasized the role of the mitochondria in this process. However, the engagement of other organelles is less known. Particularly, the role of lysosomes and their proteolytic system, which participates in apoptotic cell death, is still unclear. The aim of this study was to investigate the role of lysosomal cathepsins on molecular signaling in MD-induced apoptosis in U937 cells. MD treatment induced translocation of cysteine cathepsins B, C, and S, and aspartic cathepsin D. Once in the cytosol, some cathepsins cleaved the proapoptotic molecule, Bid, in a process that was completely prevented by E64d, a general inhibitor of cysteine cathepsins, and partially prevented by the pancaspase inhibitor, z-VAD-fmk. Upon loss of the mitochondrial membrane potential, apoptosome activation led to caspase-9 processing, activation of caspase-3-like caspases, and poly (ADP-ribose) polymerase cleavage. Notably, the endogenous protein inhibitor, stefin B, was degraded by cathepsin D and caspases. This process was prevented by z-VAD-fmk, and partially by pepstatin A-penetratin. These findings suggest that the cleaved Bid protein acts as an amplifier of apoptotic signaling through mitochondria, thus enhancing the activity of cysteine cathepsins following stefin B degradation. Topics: Amino Acid Chloromethyl Ketones; Antineoplastic Agents; Apoptosis; Apoptosomes; BH3 Interacting Domain Death Agonist Protein; Caspase 3; Caspase 9; Cathepsin B; Cathepsin C; Cathepsin D; Cathepsins; Cystatin B; Gene Expression Regulation, Neoplastic; Humans; Leucine; Lysosomes; Membrane Potential, Mitochondrial; Mitochondria; Pepstatins; Poly(ADP-ribose) Polymerases; Protease Inhibitors; Proteolysis; Signal Transduction; U937 Cells; Vitamin K 3 | 2019 |
Protein kinase C inhibition induces DNA fragmentation in COLO 205 cells which is blocked by cysteine protease inhibition but not mediated through caspase-3.
Enhancing apoptosis to remove abnormal cells has potential in reversing cancerous processes. Caspase-3 activation generally accompanies apoptosis and its substrates include enzymes responsible for DNA fragmentation and isozymes of protein kinase C (PKC). Recent data, however, question its obligatory role in apoptosis. We have examined whether modulation of PKC activity induces apoptosis in COLO 205 cells and the role of caspase-3. Proliferation ([3H]thymidine) and apoptosis (DNA fragmentation and FACS) of COLO 205 cells were measured in response to PKC activation and inhibition. Caspase-3 activity was assayed and the effects of its inhibition with Ac-DEVD-cmk, and the effect of other protease inhibitors, on apoptosis were determined. PKC activation and inhibition both reduced DNA synthesis and induced DNA fragmentation. As PKC inhibitors induced DNA fragmentation more rapidly than PKC activators and failed to block activator effects, we conclude that it is PKC down-regulation (i.e., inhibition) after activator exposure that mediates apoptosis. Increases in caspase-3 activity occurred during apoptosis but apoptosis was not blocked by caspase inhibition. By contrast, the cysteine protease inhibitor, E-64d, blocked apoptosis. Cysteine proteases not of the caspase family may either act more closely to the apoptotic process than caspases or lie on an alternative, more active pathway. Topics: Aged; Alkaloids; Amino Acid Chloromethyl Ketones; Aprotinin; Benzophenanthridines; Benzyl Compounds; Caspase 3; Caspases; Cell Division; Cell Transformation, Neoplastic; Colonic Neoplasms; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Dipeptides; DNA; DNA Fragmentation; Down-Regulation; Humans; Hydrocarbons, Fluorinated; Leucine; Leupeptins; Male; Pepstatins; Phenanthridines; Protein Kinase C; Pyridines; Tumor Cells, Cultured | 2003 |
Lysosomal proteases as potential targets for the induction of apoptotic cell death in human neuroblastomas.
Neuroblastoma is the most common type of cancer in infants. In children this tumor is particularly aggressive; despite various new therapeutic approaches, it is associated with poor prognosis. Given the importance of endosomal-lysosomal proteolysis in cellular metabolism, we hypothesized that inhibition of lysosomal protease would impact negatively on neuroblastoma cell survival. Treatment with E-64 or CA074Me (2 specific inhibitors of cathepsin B) or with pepstatin A (a specific inhibitor of cathepsin D) was cytotoxic for 2 neuroblastoma cell lines having different degrees of malignancy. Cell death was associated with condensation and fragmentation of chromatin and externalization of plasma membrane phosphatidylserine, 2 hallmarks of apoptosis. Concomitant inhibition of the caspase cascade protected neuroblastoma cells from cathepsin inhibitor-induced cytotoxicity. These data indicate that prolonged inhibition of the lysosomal proteolytic pathway is incompatible with cell survival, leading to apoptosis of neuroblastoma cells, and that the cathepsin-mediated and caspase-mediated proteolytic systems are connected and cooperate in the regulation of such an event. Since modern antitumor chemotherapy is aimed at restoring the normal rate of apoptosis in neoplastic tissues, the demonstration that endosomal-lysosomal cathepsins are involved in this process may constitute a basis for novel strategies that include cathepsin inhibitors in the therapeutic regimen. Topics: Amino Acid Chloromethyl Ketones; Apoptosis; Brain Neoplasms; Caspase Inhibitors; Caspases; Cathepsin B; Cathepsin D; Cell Survival; Chromatin; Cysteine Proteinase Inhibitors; Dipeptides; Humans; Leucine; Lysosomes; Neuroblastoma; Pepstatins; Tumor Cells, Cultured | 2002 |
Possible involvement of EBV-mediated alpha-fodrin cleavage for organ-specific autoantigen in Sjogren's syndrome.
A cleavage product of alpha-fodrin may be an important organ-specific autoantigen in the pathogenesis of Sjogren's syndrome (SS), but the mechanisms of alpha-fodrin cleavage remain unclear. Since EBV has been implicated in the pathogenesis of SS, we determined whether EBV activation could induce the SS-specific 120-kDa autoantigen alpha-fodrin. ZEBRA mRNA expression, a marker for activation of the lytic cycle of EBV, was found in the salivary gland tissues from SS patients, but not in those from control individuals. ZEBRA-expressing lymphoid cells were also found in the SS glands in double-stained immunohistochemistry. Furthermore, a significant link between production of Abs against 120-kDa alpha-fodrin and reactivated EBV Ag was found in sera from patients with SS, but not in those from control individuals. EBV-activated lymphoid cells showed specific alpha-fodrin cleavage to the expected 120-kDa fragments in vitro. Pretreatment with caspase inhibitors inhibited cleavage of alpha-fodrin. Thus, an increase in apoptotic protease activities induced by EBV reactivation may be involved in the progression of alpha-fodrin proteolysis in the development of SS. Topics: Amino Acid Chloromethyl Ketones; Apoptosis; Aprotinin; Autoantigens; Carrier Proteins; Caspases; Cysteine Proteinase Inhibitors; DNA-Binding Proteins; Herpesvirus 4, Human; Humans; Hydrolysis; Leucine; Leupeptins; Microfilament Proteins; Molecular Weight; Organ Specificity; Pepstatins; Sjogren's Syndrome; Trans-Activators; Tumor Cells, Cultured; Viral Proteins; Virus Activation | 2001 |
Collagen gel overlay induces two phases of apoptosis in MDCK cells.
We previously demonstrated that collagen gel overlay induced cell remodeling to form lumen and apoptosis in Madin-Darby canine kidney cells. In the present study, we established that collagen gel overlay-induced apoptosis was initiated at areas exclusive of cell remodeling within 24 h (first phase) and extended into areas of cell remodeling within 48 h (second phase). Collagen gel overlay-induced apoptosis was accompanied by selective proteolysis of focal adhesion kinase (FAK), talin, p130(cas), and c-src. Upon collagen gel overlay, FAK was initially degraded into a 90-kDa product during the first phase and subsequently into a 80-kDa product during the second phase. Collagen gel overlay-induced apoptosis of focal adhesion complex proteins and apoptosis of the first phase could be blocked only by a protease inhibitor cocktail. In addition, we found that both DEVD-fmk and ZVAD-fmk inhibited secondary proteolysis of FAK, but only ZVAD-fmk blocked collagen gel overlay-induced apoptosis of the second phase. Finally, collagen gel overlay-induced apoptosis and proteolysis of focal adhesion complex proteins were completely inhibited by the combination of protease inhibitor cocktail and ZVAD-fmk. Taken together, collagen gel overlay induces two phases of apoptosis; the first phase is dependent on proteolysis of focal adhesion complex proteins, and the second phase on activation of caspases. Topics: Actinin; Amino Acid Chloromethyl Ketones; Animals; Apoptosis; Cell Adhesion; Cell Line; Collagen; Crk-Associated Substrate Protein; Cycloheximide; Cysteine Proteinase Inhibitors; Epithelial Cells; Focal Adhesion Protein-Tyrosine Kinases; Kidney; Oligopeptides; Pepstatins; Phenylmethylsulfonyl Fluoride; Phosphoproteins; Protease Inhibitors; Protein Synthesis Inhibitors; Protein-Tyrosine Kinases; Proteins; Proto-Oncogene Proteins pp60(c-src); Retinoblastoma-Like Protein p130; Talin; Vinculin | 2001 |
Differential suppression by protease inhibitors and cytokines of apoptosis induced by wild-type p53 and cytotoxic agents.
Apoptosis induced in myeloid leukemic cells by wild-type p53 was suppressed by different cleavage-site directed protease inhibitors, which inhibit interleukin-1 beta-converting enzyme-like, granzyme B and cathepsins B and L proteases. Apoptosis was also suppressed by the serine and cysteine protease inhibitor N-tosyl-L-phenylalanine chloromethylketone (TPCK) [corrected], but not by other serine or cysteine protease inhibitors including N alpha-p-tosyl-L-lysine chloromethylketone (TLCK), E64, pepstatin A, or chymostatin. Protease inhibitors suppressed induction of apoptosis by gamma-irradiation and cycloheximide but not by doxorubicin, vincristine, or withdrawal of interleukin 3 from interleukin 3-dependent 32D non-malignant myeloid cells. Induction of apoptosis in normal thymocytes by gamma-irradiation or dexamethasone was also suppressed by the cleavage-site directed protease inhibitors, but in contrast to the myeloid leukemic cells apoptosis in thymocytes was suppressed by TLCK but not by TPCK. The results indicate that (i) inhibitors of interleukin-1 beta-converting enzyme-like proteases and some other protease inhibitors suppressed induction of apoptosis by wild-type p53 and certain p53-independent pathways of apoptosis; (ii) the protease inhibitors together with the cytokines interleukin 6 and interferon-gamma or the antioxidant butylated hydroxyanisole gave a cooperative protection against apoptosis; (iii) these protease inhibitors did not suppress induction of apoptosis by some cytotoxic agents or by viability-factor withdrawal from 32D cells, whereas these pathways of apoptosis were suppressed by cytokines; (iv) there are cell type differences in the proteases involved in apoptosis; and (v) there are multiple pathways leading to apoptosis that can be selectively induced and suppressed by different agents. Topics: Amino Acid Chloromethyl Ketones; Apoptosis; Butylated Hydroxyanisole; Caspase 1; Cathepsin B; Cathepsin L; Cathepsins; Cysteine Endopeptidases; Cytokines; Endopeptidases; Enzyme Precursors; Granulocyte-Macrophage Colony-Stimulating Factor; Granzymes; Humans; Interferon-gamma; Interleukin-6; Oligopeptides; Pepstatins; Protease Inhibitors; Serine Endopeptidases; Tosyllysine Chloromethyl Ketone; Tosylphenylalanyl Chloromethyl Ketone; Tumor Cells, Cultured; Tumor Suppressor Protein p53 | 1996 |