benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone and leupeptin
benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone has been researched along with leupeptin* in 3 studies
Other Studies
3 other study(ies) available for benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone and leupeptin
Article | Year |
---|---|
Intracochlear perfusion of leupeptin and z-VAD-FMK: influence of antiapoptotic agents on gunshot-induced hearing loss.
The therapeutic efficiency of cochlear infusion of two anti-apoptotic substances: a potent calpain inhibitor, leupeptin and a caspase inhibitor, z-VAD-FMK was evaluated in guinea pigs after a gunshot noise-induced trauma (170 dB SPL). A preliminary study showed that hair cell apoptosis appeared within 7 days of the noise trauma. For each animal, one of the cochleae was perfused directly starting 1 h after the trauma with leupeptin or z-VAD-FMK for 7 days via a mini-osmotic pump whereas the other cochlea was untreated. ABR threshold shifts were measured over a 14-day recovery period. The functional hearing study was supplemented by histological analysis. Two days after the trauma significant differences were observed between threshold shifts in the z-VAD-FMK-treated and the non-treated ears. Cochleograms showed that hair cell losses were significantly lower in z-VAD-FMK-treated ears. Regarding the leupeptin treatment, no significant difference between treated and non-treated ears was observed. This work indicates that early direct infusion of z-VAD-FMK into the cochlea accelerates hearing recovery and reduces hair cell loss after gunshot noise-induced trauma. These results suggest that the gunshot noise-induced trauma may involve the caspase pathway rather than the calpain pathway in the apoptotic process. Topics: Amino Acid Chloromethyl Ketones; Animals; Apoptosis; Cysteine Proteinase Inhibitors; Firearms; Guinea Pigs; Hair Cells, Auditory; Hearing Loss, Noise-Induced; Infusions, Parenteral; Leupeptins; Time Factors | 2011 |
Possible involvement of EBV-mediated alpha-fodrin cleavage for organ-specific autoantigen in Sjogren's syndrome.
A cleavage product of alpha-fodrin may be an important organ-specific autoantigen in the pathogenesis of Sjogren's syndrome (SS), but the mechanisms of alpha-fodrin cleavage remain unclear. Since EBV has been implicated in the pathogenesis of SS, we determined whether EBV activation could induce the SS-specific 120-kDa autoantigen alpha-fodrin. ZEBRA mRNA expression, a marker for activation of the lytic cycle of EBV, was found in the salivary gland tissues from SS patients, but not in those from control individuals. ZEBRA-expressing lymphoid cells were also found in the SS glands in double-stained immunohistochemistry. Furthermore, a significant link between production of Abs against 120-kDa alpha-fodrin and reactivated EBV Ag was found in sera from patients with SS, but not in those from control individuals. EBV-activated lymphoid cells showed specific alpha-fodrin cleavage to the expected 120-kDa fragments in vitro. Pretreatment with caspase inhibitors inhibited cleavage of alpha-fodrin. Thus, an increase in apoptotic protease activities induced by EBV reactivation may be involved in the progression of alpha-fodrin proteolysis in the development of SS. Topics: Amino Acid Chloromethyl Ketones; Apoptosis; Aprotinin; Autoantigens; Carrier Proteins; Caspases; Cysteine Proteinase Inhibitors; DNA-Binding Proteins; Herpesvirus 4, Human; Humans; Hydrolysis; Leucine; Leupeptins; Microfilament Proteins; Molecular Weight; Organ Specificity; Pepstatins; Sjogren's Syndrome; Trans-Activators; Tumor Cells, Cultured; Viral Proteins; Virus Activation | 2001 |
Inhibition of apoptosis in cultured porcine granulosa cells by inhibitors of caspase and serine protease activity.
Protease inhibitors were used to test the hypothesis that caspases and other proteases were active during apoptosis in cultured porcine granulosa cells. Cells isolated from 3 to 6 mm follicles were cultured for 24 h in Dulbecco's modified Eagles medium: Hams F12 (1:11 containing 1% fetal bovine serum. Final inhibitor concentrations, added in 10 microL of dimethylsulfoxide, were 0, 1, 5, 25 and 125 microM. Cells with compromised plasma membrane integrity, identified by uptake ethidium homodimer, increased during culture in the absence of inhibitors from 37% to 43%. Apoptotic (A0) cells, identified by DNA fluorescence flow cytometry, increased (P < 0.05) from 1.7% to 29%. The serine protease inhibitor N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) at 125 microM was lethal increasing (P < 0.05) cells with compromised membranes to 92%. In response to TPCK, A0 cells decreased from 55% to 1.2%; progesterone and estradiol production were decreased by 94% and 98%, respectively. The general caspase inhibitor, benzyloxycarbonyl-valinyl-alaninyl-aspartyl fluoro methylketone, decreased (P < 0.05) A0 cells linearly from 33% to 3 % between 0 and 125 microM without significant effect on steroidogenesis or on the percentage of cells with compromised plasma membranes. Other inhibitors only had a marginal effect on apoptosis; concentrations of > or = 1 microM decreased (P < 0.05) A0 cells from 29% to 18% to 21% and had no significant effect on membrane integrity or steroid production. We conclude that caspases are associated with apoptosis in cultured porcine granulosa cells. Death induced by TPCK was through a non-apoptotic mechanism. Topics: Amino Acid Chloromethyl Ketones; Animals; Apoptosis; Caspase Inhibitors; Caspases; Cell Membrane; Cysteine Proteinase Inhibitors; DNA Fragmentation; Electrophoresis, Agar Gel; Estradiol; Female; Flow Cytometry; Granulosa Cells; Leucine; Leupeptins; Microscopy, Fluorescence; Phenylmethylsulfonyl Fluoride; Progesterone; Radioimmunoassay; Regression Analysis; Serine Proteinase Inhibitors; Swine; Tosylphenylalanyl Chloromethyl Ketone | 2000 |