benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone and chelerythrine

benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone has been researched along with chelerythrine* in 3 studies

Other Studies

3 other study(ies) available for benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone and chelerythrine

ArticleYear
Protein kinase C delta is not activated by caspase-3 and its inhibition is sufficient to induce apoptosis in the colon cancer line, COLO 205.
    Cellular signalling, 2005, Volume: 17, Issue:2

    Activation of protein kinase C delta (PKCdelta) is believed to be pro-apoptotic. PKCdelta is reported to be reduced in colon cancers. Using a colon cancer cell line, COLO 205, we have examined the roles of PKCdelta in apoptosis and of caspase-3 in the activation and inhibition of PKCdelta. PKCdelta activation with bistratene A and its inhibition with rottlerin induced apoptosis. Effects of PKC activators and inhibitors were additive, suggesting that PKCdelta down-regulation was responsible for the effects on apoptosis. Different apoptotic pathways induced PKCdelta cleavage, but the fragment produced was inactive in kinase assays. Caspase-3 inhibition did not block DNA fragmentation or PKCdelta proteolysis despite blocking intracellular caspase-3 activity. Calpain inhibition with calpeptin did not prevent TPA-induced PKCdelta cleavage. We conclude that in colonocytes, inhibition of PKCdelta is sufficient to lead to caspase-3-independent apoptosis. Caspase-3 does not cleave PKCdelta to an active form, nor does caspase-3 inhibition block apoptosis.

    Topics: Acetamides; Acetophenones; Alkaloids; Amino Acid Chloromethyl Ketones; Antineoplastic Agents; Apoptosis; Benzophenanthridines; Benzopyrans; Calpain; Caspase 3; Caspase Inhibitors; Caspases; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; Cysteine Proteinase Inhibitors; Dipeptides; DNA Fragmentation; Enzyme Activation; Enzyme Inhibitors; Flow Cytometry; Histones; Humans; Indomethacin; Kinetics; Phenanthridines; Phosphorylation; Protein Kinase C; Protein Kinase C-delta; Pyrans; Spiro Compounds; Tetradecanoylphorbol Acetate; Tumor Necrosis Factor-alpha

2005
Protein kinase C inhibition induces DNA fragmentation in COLO 205 cells which is blocked by cysteine protease inhibition but not mediated through caspase-3.
    Experimental cell research, 2003, Sep-10, Volume: 289, Issue:1

    Enhancing apoptosis to remove abnormal cells has potential in reversing cancerous processes. Caspase-3 activation generally accompanies apoptosis and its substrates include enzymes responsible for DNA fragmentation and isozymes of protein kinase C (PKC). Recent data, however, question its obligatory role in apoptosis. We have examined whether modulation of PKC activity induces apoptosis in COLO 205 cells and the role of caspase-3. Proliferation ([3H]thymidine) and apoptosis (DNA fragmentation and FACS) of COLO 205 cells were measured in response to PKC activation and inhibition. Caspase-3 activity was assayed and the effects of its inhibition with Ac-DEVD-cmk, and the effect of other protease inhibitors, on apoptosis were determined. PKC activation and inhibition both reduced DNA synthesis and induced DNA fragmentation. As PKC inhibitors induced DNA fragmentation more rapidly than PKC activators and failed to block activator effects, we conclude that it is PKC down-regulation (i.e., inhibition) after activator exposure that mediates apoptosis. Increases in caspase-3 activity occurred during apoptosis but apoptosis was not blocked by caspase inhibition. By contrast, the cysteine protease inhibitor, E-64d, blocked apoptosis. Cysteine proteases not of the caspase family may either act more closely to the apoptotic process than caspases or lie on an alternative, more active pathway.

    Topics: Aged; Alkaloids; Amino Acid Chloromethyl Ketones; Aprotinin; Benzophenanthridines; Benzyl Compounds; Caspase 3; Caspases; Cell Division; Cell Transformation, Neoplastic; Colonic Neoplasms; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Dipeptides; DNA; DNA Fragmentation; Down-Regulation; Humans; Hydrocarbons, Fluorinated; Leucine; Leupeptins; Male; Pepstatins; Phenanthridines; Protein Kinase C; Pyridines; Tumor Cells, Cultured

2003
Modulation of apoptosis by mitochondrial uncouplers: apoptosis-delaying features despite intrinsic cytotoxicity.
    Biochemical pharmacology, 2002, Feb-01, Volume: 63, Issue:3

    Disruption of mitochondrial electron transport and opening of the so-called mitochondrial permeability transition pores (PTPs) are early events in apoptotic cell death and may be caused by the uncoupler of mitochondrial oxidation and phosphorylation, carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). We investigated the cellular toxicity of FCCP in HL60 and CCRF-CEM cells alone or in combination with the known apoptosis inducers such as inhibitor of serine/threonine protein kinases staurosporine (Sts) and protein kinase C inhibitor chelerythrine. FCCP induced apoptotic cell death in both cell lines in a dose-dependent manner, and we were able to demonstrate an appearance of caspase-3-dependent PARP cleavage fragments with Western blot and the appearance of large (15-50 kb) DNA fragments using pulsed-field gel electrophoresis. After 2 hr of incubation with Che or Sts more than half of the cells had died by apoptosis. We observed a statistically significant delay in Sts- and Che-induced apoptotic cell death in CCRF-CEM cells when the cells were preincubated with FCCP but not with zVAD-FMK: about 50% more cells survived after pre-treatment with FCCP, as compared to 1 hr treatment with Che alone (P<0.05), and 25% more cells were alive after 6 hr of treatment, as compared to 6 hr exposure to Sts alone (P<0.05). The protective effect of FCCP was, however, transient and lasted only 6 hr. Treatment with aurintricarboxylic acid completely prevented Che- and Sts-induced apoptotic cell death in CCRF-CEM and HL60 cells. Incubation with Che resulted in a drop in the intracellular ATP content, predominantly distinctive in HL60, and in NAD(+) content in CCRF-CEM cells. Both ATP and NAD(+) drop were prevented with ATA, but not with FCCP or zVAD. Our data suggest that treatment with uncouplers of oxidative phosphorylation can induce apoptotic cell death in haematopoietic cell lines. However, when used in combination with serine/threonine protein kinase inhibitors FCCP can even prevent apoptosis.

    Topics: Adenosine Triphosphate; Alkaloids; Amino Acid Chloromethyl Ketones; Apoptosis; Aurintricarboxylic Acid; Benzophenanthridines; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Drug Interactions; Enzyme Inhibitors; HL-60 Cells; Humans; Mitochondria; NAD; NADP; Phenanthridines; Staurosporine; Tumor Cells, Cultured; Uncoupling Agents

2002