benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone and 5-nitro-2-(3-phenylpropylamino)benzoic-acid

benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone has been researched along with 5-nitro-2-(3-phenylpropylamino)benzoic-acid* in 2 studies

Other Studies

2 other study(ies) available for benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone and 5-nitro-2-(3-phenylpropylamino)benzoic-acid

ArticleYear
Caspase-dependent and -independent induction of phosphatidylserine externalization during apoptosis in human renal carcinoma Cak(1)-1 and A-498 cells.
    Toxicology, 2007, Jan-05, Volume: 229, Issue:1-2

    Renal cell carcinoma is the most common neoplasm occurring in the kidney and is largely resistant to current chemotherapy. Understanding the mechanisms involved in renal carcinoma cell death may lead to novel and more effective therapies. In Cak(i)-1 renal cancer cells, using phosphatidylserine externalization as a marker of apoptosis, the anti-cancer drugs 5-fluorouracil (5-FU), and its pro-drugs, doxifluridine (Dox) and floxuridine (Flox) proceeds via a caspase-dependent mechanism. In contrast, phosphatidylserine externalization produced by staurosporine in the renal cancer cell lines Cak(i)-1 and A-498 proceeds via a caspase-independent mechanism. That is, the pan caspase inhibitor N-benzyloxycabonyl-Val-Ala-Asp-fluoromethylketone (ZVAD) did not ameliorate annexin V binding, cell shrinkage or changes in nuclear morphology. Subsequent experiments were conducted to determine mediators of phosphatidylserine externalization, using annexin V binding, when caspases were inhibited. Prior treatment of A-498 cells with cathepsin B (CA74 methyl ester), cathespsin D (pepstatin A) or calpain inhibitors (calpeptin, E64d) in the presence or absence of ZVAD did not ameliorate annexin V binding. The endonuclease inhibitor aurintricarboxylic acid (ATA), phospholipase A(2) inhibitor bromoenol lactone (BEL), protein synthesis inhibitor cycloheximide (CH) and chloride channel blockers niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) all had no effect on staurosporine-induced annexin V binding in A-498 cells either in the presence or absence of ZVAD. We also modulated sphingomyelin and the de novo pathways of ceramide synthesis and found no amelioration of staurosporine-induced annexin V binding in A-498 cells either in the presence or absence of ZVAD. These results indicate that 5-FU, Dox and Flox induce externalization of phosphatidylserine during apoptosis in Cak(i)-1 renal cancer cells primarily through a caspase-dependent mechanism and that externalization of phosphatidylserine during apoptosis produced by staurosporine in the renal cancer cell line A-498 is independent of many of the common signaling pathways known to be involved in this process.

    Topics: Amino Acid Chloromethyl Ketones; Aniline Compounds; Antimetabolites, Antineoplastic; Apoptosis; Benzoic Acid; Benzylidene Compounds; Calpain; Caspases; Cathepsin B; Cathepsin D; Cell Line, Tumor; Cell Size; Ceramides; Cisplatin; Exocytosis; Fumonisins; Humans; Kidney Neoplasms; Naphthalenes; Niflumic Acid; Nitrobenzoates; Phosphatidylserines; Pyrones; Sphingomyelin Phosphodiesterase; Staurosporine; Triterpenes

2007
Inhibition of caspase 3 abrogates lipopolysaccharide-induced nitric oxide production by preventing activation of NF-kappaB and c-Jun NH2-terminal kinase/stress-activated protein kinase in RAW 264.7 murine macrophage cells.
    Infection and immunity, 2001, Volume: 69, Issue:3

    The effect of caspase inhibitors on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 267.4 murine macrophage cells was investigated. Pretreatment of RAW cells with a broad caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK), resulted in a striking reduction in LPS-induced NO production. Z-VAD-FMK inhibited LPS-induced NF-kappaB activation. Furthermore, it blocked phosphorylation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) but not that of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinases. Similarly, a caspase 3-specific inhibitor, Z-Asp-Glu-Val-Asp-fluoromethylketone, inhibited NO production, NF-kappaB activation, and JNK/SAPK phosphorylation in LPS-stimulated RAW cells. The attenuated NO production was due to inhibition of the expression of an inducible-type NO synthase (iNOS). The overexpression of the dominant negative mutant of JNK/SAPK and the addition of a JNK/SAPK inhibitor blocked iNOS expression but did not block LPS-induced caspase 3 activation. It was therefore suggested that the inhibition of caspase 3 might abrogate LPS-induced NO production by preventing the activation of NF-kappaB and JNK/SAPK. The caspase family, especially caspase 3, is likely to play an important role in the signal transduction for iNOS-mediated NO production in LPS-stimulated mouse macrophages.

    Topics: Amino Acid Chloromethyl Ketones; Animals; Caspase 3; Caspase Inhibitors; Enzyme Activation; JNK Mitogen-Activated Protein Kinases; Lipopolysaccharides; Macrophages; Mice; Mitogen-Activated Protein Kinases; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitrobenzoates; Phosphorylation; Protein Processing, Post-Translational; Receptor Cross-Talk; Signal Transduction

2001