benzyloxycarbonylleucyl-leucyl-leucine-aldehyde and acetylleucyl-leucyl-norleucinal

benzyloxycarbonylleucyl-leucyl-leucine-aldehyde has been researched along with acetylleucyl-leucyl-norleucinal* in 32 studies

Other Studies

32 other study(ies) available for benzyloxycarbonylleucyl-leucyl-leucine-aldehyde and acetylleucyl-leucyl-norleucinal

ArticleYear
Proteasome Inhibitors Bortezomib and Carfilzomib Stimulate the Transport Activity of Human Organic Anion Transporter 1.
    Molecular pharmacology, 2020, Volume: 97, Issue:6

    Organic anion transporter 1 (OAT1), expressed at the basolateral membrane of renal proximal tubule epithelial cells, mediates the renal excretion of many clinically important drugs. Previous study in our laboratory demonstrated that ubiquitin conjugation to OAT1 leads to OAT1 internalization from the cell surface and subsequent degradation. The current study showed that the ubiquitinated OAT1 accumulated in the presence of the proteasomal inhibitors MG132 and ALLN rather than the lysosomal inhibitors leupeptin and pepstatin A, suggesting that ubiquitinated OAT1 degrades through proteasomes. Anticancer drugs bortezomib and carfilzomib target the ubiquitin-proteasome pathway. We therefore investigate the roles of bortezomib and carfilzomib in reversing the ubiquitination-induced downregulation of OAT1 expression and transport activity. We showed that bortezomib and carfilzomib extremely increased the ubiquitinated OAT1, which correlated well with an enhanced OAT1-mediated transport of p-aminohippuric acid and an enhanced OAT1 surface expression. The augmented OAT1 expression and transport activity after the treatment with bortezomib and carfilzomib resulted from a reduced rate of OAT1 degradation. Consistent with this, we found decreased 20S proteasomal activity in cells that were exposed to bortezomib and carfilzomib. In conclusion, this study identified the pathway in which ubiquitinated OAT1 degrades and unveiled a novel role of anticancer drugs bortezomib and carfilzomib in their regulation of OAT1 expression and transport activity. SIGNIFICANCE STATEMENT: Bortezomib and carfilzomib are two Food and Drug Administration-approved anticancer drugs, and proteasome is the drug target. In this study, we unveiled a new role of bortezomib and carfilzomib in enhancing OAT1 expression and transport activity by preventing the degradation of ubiquitinated OAT1 in proteasomes. This finding provides a new strategy in regulating OAT1 function that can be used to accelerate the clearance of drugs, metabolites, or toxins and reverse the decreased expression under disease conditions.

    Topics: Antineoplastic Agents; Biological Transport, Active; Bortezomib; HEK293 Cells; Humans; Leupeptins; Oligopeptides; Organic Anion Transport Protein 1; p-Aminohippuric Acid; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Proteolysis; Ubiquitination

2020
Proteasome inhibition in cancer is associated with enhanced tumor targeting by the adeno-associated virus/phage.
    Molecular oncology, 2013, Volume: 7, Issue:1

    Bacteriophage (phage), which are viruses that infect bacteria only, have shown promise as vehicles for targeted cancer gene therapy, albeit with poor efficiency. Recently, we generated an improved version of phage vectors by incorporating cis genetic elements of adeno-associated virus (AAV). This novel AAV/phage hybrid (AAVP) efficiently delivered systemically administered therapeutic genes to various tumor targets by displaying an integrin tumor-targeting ligand on the phage capsid. However, inherent limitations in bacteriophage mean that these AAVP vectors still need to be improved. One of the limitations of AAVP in mammalian cells may be its susceptibility to proteasomal degradation. The proteasome is upregulated in cancer and it is known that it constitutes a barrier to gene delivery by certain eukaryotic viruses. We report here that inhibition of proteasome improved targeted reporter gene delivery by AAVP in cancer cells in vitro and in tumors in vivo after intravenous vector administration to tumor-bearing mice. We also show enhanced targeted tumor cell killing by AAVP upon proteasome inhibition. The AAVP particles persisted significantly in cancer cells in vitro and in tumors in vivo after systemic administration, and accumulated polyubiquitinated coat proteins. Our results suggest that the proteasome is indeed a barrier to tumor targeting by AAVP and indicate that a combination of proteasome-inhibiting drugs and AAVP should be considered for clinical anticancer therapy.

    Topics: Animals; Bacteriophages; Cell Line; Cell Line, Tumor; Dependovirus; Fluorescent Antibody Technique; Humans; Leupeptins; Mice; Proteasome Endopeptidase Complex

2013
Presenilin-2 regulates the degradation of RBP-Jk protein through p38 mitogen-activated protein kinase.
    Journal of cell science, 2012, Mar-01, Volume: 125, Issue:Pt 5

    Transcriptional regulation performs a central role in Notch1 signaling by recombining binding protein Suppressor of Hairless (RBP-Jk)--a signaling pathway that is widely involved in determination of cell fate. Our earlier work demonstrated the possible regulation of the Notch1-RBP-Jk pathway through protein degradation of RBP-Jk; however, the potential regulator for the degradation of RBP-Jk remains to be determined. Here, we report that the expression of endogenous and exogenous RBP-Jk was increased significantly in cells treated with proteasome- and lysosome-specific inhibitors. The effects of these inhibitors on RBP-Jk occurred in a dose- and time-dependent manner. The level of RBP-Jk protein was higher in presenilin-2 (PS2)-knockout cells than in presenilin-1 (PS1)-knockout cells. Furthermore, the level of RBP-Jk was decreased by expression of PS2 in PS1 and PS2 double-knockout cells. We also found that PS1-knockout cells treated with a specific inhibitor of p38 mitogen-activated protein kinase ∂ (MAPK) had significantly increased levels of RBP-Jk. p38 MAPK phosphorylates RBP-Jk at Thr339 by physical binding, which subsequently induces the degradation and ubiquitylation of the RBP-Jk protein. Collectively, our results indicate that PS2 modulates the degradation of RBP-Jk through phosphorylation by p38 MAPK.

    Topics: Acetylcysteine; Ammonium Chloride; Cell Line; Chloroquine; Cysteine Proteinase Inhibitors; Gene Knockout Techniques; HEK293 Cells; Humans; Immunoglobulin J Recombination Signal Sequence-Binding Protein; Leupeptins; Lysosomes; MAP Kinase Signaling System; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Presenilin-1; Presenilin-2; Proteasome Inhibitors; Proteolysis; Receptor, Notch1; Transcription, Genetic; Transcriptional Activation; Ubiquitination

2012
Degradation of mouse NTE-related esterase by macroautophagy and the proteasome.
    Molecular biology reports, 2012, Volume: 39, Issue:6

    NTE-related esterase (NRE) is a novel endoplasmic reticulum-anchored lysophospholipase with high homology to neuropathy target esterase (NTE). However, little is known about the regulation of NRE protein. In the current study, we investigated the degradation pathways of mouse NRE (mNRE) in mammalian cells. Based on experiments with inhibitors and inducer of protein degradation pathways, we provide here the first evidence that mNRE is degraded by macroautophagy as well as by the proteasome. Moreover, the contribution of protein domains to the degradation of mNRE was investigated, which showed that the transmembrane and regulatory domain played a role in the degradation of mNRE by macroautophagy and the proteasome respectively. In contrast the C-terminal catalytic domain was not involved in both degradation pathways of mNRE. These findings showed for the first time that the degradation pathways in controlling mNRE quantity and may provide further insight into structure and regulation of mNRE.

    Topics: Adenine; Animals; Autophagy; Carboxylic Ester Hydrolases; Cycloheximide; Green Fluorescent Proteins; HEK293 Cells; Humans; Leupeptins; Mice; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Biosynthesis; Protein Structure, Tertiary; Proteolysis; Recombinant Fusion Proteins

2012
Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability.
    Oncogene, 2011, Feb-17, Volume: 30, Issue:7

    The ubiquitin-proteasome pathway is essential for most cellular processes, including protein quality control, cell cycle, transcription, signaling, protein transport, DNA repair and stress responses. Hampered proteasome activity leads to the accumulation of polyubiquitylated proteins, endoplastic reticulum (ER) stress and even cell death. The ability of chemical proteasome inhibitors (PIs) to induce apoptosis is utilized in cancer therapy. During PI treatment, misfolded proteins accrue to cytoplasmic aggresomes. The formation of aggresome-like structures in the nucleus has remained obscure. We identify here a nucleolus-associated RNA-protein aggregate (NoA) formed by the inhibition of proteasome activity in mammalian cells. The aggregate forms within the nucleolus and is dependent on nucleolar integrity, yet is a separate structure, lacking nucleolar marker proteins, ribosomal RNA (rRNA) and rRNA synthesis activity. The NoAs contain polyadenylated RNA, conjugated ubiquitin and numerous nucleoplasmic proteasome target proteins. Several of these are key factors in oncogenesis, including transcription factors p53 and retinoblastoma protein (Rb), several cell cycle-regulating cyclins and cyclin-dependent kinases (CDKs), and stress response kinases ataxia-telangiectasia mutated (ATM) and Chk1. The aggregate formation depends on ubiquitin availability, as shown by modulating the levels of ubiquitin and deubiquitinases. Furthermore, inhibition of chromosome region maintenance 1 protein homolog (CRM1) export pathway aggravates the formation of NoAs. Taken together, we identify here a novel nuclear stress body, which forms upon proteasome inactivity within the nucleolus and is detectable in mammalian cell lines and in human tissue. These findings show that the nucleolus controls protein and RNA surveillance and export by the ubiquitin pathway in a previously unidentified manner, and provide mechanistic insight into the cellular effects of PIs.

    Topics: Acetylcysteine; Ataxia Telangiectasia Mutated Proteins; Cell Cycle Proteins; Cell Line; Cell Nucleolus; Checkpoint Kinase 1; Cyclin-Dependent Kinases; Cyclins; Cysteine Proteinase Inhibitors; DNA-Binding Proteins; Humans; Leucine; Leupeptins; Nuclear Proteins; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Kinases; Protein Serine-Threonine Kinases; RNA, Messenger; Transcription Factors; Tumor Suppressor Proteins; Ubiquitin

2011
Decreased protein synthesis of Hsp27 associated with cellular toxicity in a cell model of Machado-Joseph disease.
    Neuroscience letters, 2009, Apr-24, Volume: 454, Issue:2

    Machado-Joseph disease is an autosomal dominant spinocerebellar degeneration caused by the expansion of a polyglutamine tract within the gene product, ataxin-3. We have previously shown that increased oxidative stress and decreased expression of Hsp27 may be contributory factors to the disease progression. In this study, we utilized neuroblastoma SK-N-SH cells stably transfected with full-length expanded ataxin-3 to further investigate the mechanism(s) resulting in the decreased expression of Hsp27. Results from 35S-methionine pulse-chase labeling and protein degradation assays revealed that decreased Hsp27 in mutant MJD cells is due to defects in protein synthesis. Our results further demonstrated that Hsp27 degradation is independent of the proteasome degradation pathway. In addition, we showed that overexpression of Hsp27 desensitizes mutant MJD cells to apoptotic stress. Taken together, these findings provide the first evidence that expanded ataxin-3 interferes with Hsp27 synthesis, which may contribute to the impairment of the cells' ability to respond to stresses and trigger the progression of this late-onset disease.

    Topics: Animals; Ataxin-3; Blotting, Western; Cell Line, Tumor; Chlorocebus aethiops; COS Cells; Cysteine Proteinase Inhibitors; Gene Expression; Heat-Shock Proteins; HSP27 Heat-Shock Proteins; Humans; Leupeptins; Machado-Joseph Disease; Molecular Chaperones; Nerve Tissue Proteins; Neurons; Nuclear Proteins; Peptides; Repressor Proteins; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stress, Physiological; Transfection

2009
Antioxidants block proteasome inhibitor function in endometrial carcinoma cells.
    Anti-cancer drugs, 2008, Volume: 19, Issue:2

    We have recently demonstrated that proteasome inhibitors can be effective in inducing apoptotic cell death in endometrial carcinoma cell lines and primary culture explants. Increasing evidence suggests that reactive oxygen species are responsible for proteasome inhibitor-induced cell killing. Antioxidants can thus block apoptosis (cell death) triggered by proteasome inhibition. Here, we have evaluated the effects of different antioxidants (edaravone and tiron) on endometrial carcinoma cells treated with aldehyde proteasome inhibitors (MG-132 or ALLN), the boronic acid-based proteasome inhibitor (bortezomib) and the epoxyketone, epoxomicin. We show that tiron specifically inhibited the cytotoxic effects of bortezomib, whereas edaravone inhibited cell death caused by aldehyde-based proteasome inhibitors. We have, however, found that edaravone completely inhibited accumulation of ubiquitin and proteasome activity decrease caused by MG-132 or ALLN, but not by bortezomib. Conversely, tiron inhibited the ubiquitin accumulation and proteasome activity decrease caused by bortezomib. These results suggest that edaravone and tiron rescue cells of proteasome inhibitors from cell death, by inhibiting blockade of proteasome caused by MG-132 and ALLN or bortezomib, respectively. We also tested other antioxidants, and we found that vitamin C inhibited bortezomib-induced cell death. Similar to tiron, vitamin C inhibited cell death by blocking the ability of bortezomib to inhibit the proteasome. Until now, all the antioxidants that blocked proteasome inhibitor-induced cell death also blocked the proteasome inhibitor mechanism of action.

    Topics: Antioxidants; Antipyrine; Apoptosis; Ascorbic Acid; Blotting, Western; Boronic Acids; Bortezomib; Butylated Hydroxyanisole; Caspase 3; Caspase 9; Caspase Inhibitors; Cell Line, Tumor; Cell Survival; Coumarins; Cysteine Proteinase Inhibitors; Dose-Response Relationship, Drug; Edaravone; Endometrial Neoplasms; Ergothioneine; Female; Humans; Leupeptins; Oligopeptides; Proteasome Inhibitors; Pyrazines; Ubiquitin; Vitamin E; Vitamins

2008
Down-regulation of brain-pancreas relative protein in diabetic rats and by high glucose in PC12 cells: prevention by calpain inhibitors.
    Journal of pharmacological sciences, 2008, Volume: 106, Issue:1

    Brain-pancreas relative protein (BPRP) is a novel protein that we found in our laboratory. Previously we demonstrated that it is involved in ischemia and depression. In light of the putative association between diabetes and clinical depression, and the selective expression of BPRP in brain and pancreas, the present study examined whether BPRP levels are affected by induction of diabetes by alloxan injection in rats and exposure to high glucose levels in PC12 cells. Western blot and immunohistochemical analyses revealed that BPRP levels were decreased in the hippocampal CA1 neurons of diabetic rats 4 and 8 weeks post-alloxan injection and in PC12 cells 48 h after exposure to high concentrations of glucose. BPRP protein levels were not affected by osmolarity control treatments with mannitol. Follow-up pharmacological experiments in PC12 cells revealed that glucose-induced BPRP down-regulation was markedly attenuated by the calpain inhibitors N-acetyl-Leu-Leu-norleucinal (ALLN) or calpeptin, but not the proteasome-specific inhibitor carbobenzoxy-Leu-Leu-leucinal (MG132). The ability of calpain inhibitors to specifically counter the effects of high glucose exposure on BPRP levels further suggests that BPRP and calpain activity may contribute to diabetes complications in the central nervous system.

    Topics: Animals; Calpain; Cysteine Proteinase Inhibitors; Diabetes Mellitus, Experimental; Dipeptides; Down-Regulation; Glucose; Half-Life; Hippocampus; Insulin; Leupeptins; Male; Nerve Tissue Proteins; Neurons; PC12 Cells; Rats; Rats, Sprague-Dawley; Time Factors

2008
Degradation of perilipin is mediated through ubiquitination-proteasome pathway.
    Biochimica et biophysica acta, 2006, Volume: 1761, Issue:1

    Perilipin protein coats the surface of intracellular lipid droplets and plays fundamental roles in lipid droplet formation and triacylglycerol hydrolysis. Perilipin is transcriptionally regulated through peroxisome proliferator-activated receptor and post-translationally stabilized by stored intracellular neutral lipids. In this study, we show that perilipin protein accumulates in transfected Chinese hamster ovary cells cultured in the presence of fatty acids but in turn is destabilized when lipid precursors for triacylglycerol synthesis are removed from culture serum. Adding fatty acids in the culture medium prevents the degradation of perilipin. Moreover, specific proteasome inhibitors, MG132, lactacystin, and ALLN, block the degradation, whereas inhibitors of other proteases are ineffective. Pulse-chase experiments confirm that perilipin is degraded through proteasome, a process that is inhibited by MG132 or ALLN and blunted by the addition of oleic acid. We have detected the co-immunoprecipitation of perilipin and ubiquitin, thus confirming that perilipin is conjugated to poly-ubiquitin and targeted for proteasomal degradation. Treatment with MG132 increases the expression of perilipin associated with lipid droplets as well as modestly throughout the cytosol. We conclude that the degradation of perilipin is mediated through an ubiquitination-proteasome pathway, which suggests another mode for the post-translational regulation of perilipin.

    Topics: Animals; Carrier Proteins; CHO Cells; Cricetinae; Culture Media; Fatty Acids; Leupeptins; Oleic Acid; Perilipin-1; Phosphoproteins; Proteasome Endopeptidase Complex; Recombinant Proteins; Transfection; Triglycerides; Ubiquitin

2006
In vivo heteromer formation. Expression of soluble betaA4-crystallin requires coexpression of a heteromeric partner.
    The FEBS journal, 2006, Volume: 273, Issue:14

    The beta-crystallins are a family of long-lived, abundant structural proteins that are coexpressed in the vertebrate lens. As beta-crystallins form heteromers, a process that involves transient exposure of hydrophobic interfaces, we have examined whether in vivobeta-crystallin assembly is enhanced by protein chaperones, either small heat shock proteins, Hsp27 or alphaB-crystallin, or Hsp70. We show here that betaA4-crystallin is abundantly expressed in HeLa cells, but rapidly degraded, irrespective of the presence of Hsp27, alphaB-crystallin or Hsp70. Degradation is even enhanced by Hsp70. Coexpression of betaA4-crystallin with betaB2-crystallin yielded abundant soluble betaA4-betaB2-crystallin heteromers; betaB1-crystallin was much less effective in solubilizing betaA4-crystallin. As betaB2-crystallin competed for betaA4-crystallin with Hsp70 and the proteasomal degradation pathway, betaB2-crystallin probably captures an unstable betaA4-crystallin intermediate. We suggest that the proper folding of betaA4-crystallin is not mediated by general chaperones but requires a heteromeric partner, which then also acts as a dedicated chaperone towards betaA4-crystallin.

    Topics: Animals; beta-Crystallin A Chain; beta-Crystallin B Chain; beta-Crystallins; Cricetinae; Enzyme Inhibitors; Gene Expression Regulation; Genes, Reporter; Heat-Shock Proteins; HeLa Cells; HSP70 Heat-Shock Proteins; Humans; Isoelectric Focusing; Leupeptins; Luciferases; Molecular Chaperones; Mutation; Protein Folding; Solubility

2006
Adeno-associated virus (AAV)-7 and -8 poorly transduce vascular endothelial cells and are sensitive to proteasomal degradation.
    Gene therapy, 2005, Volume: 12, Issue:20

    Transduction of the vascular endothelium by adeno-associated virus (AAV) vectors would have broad appeal for gene therapy. However, levels of transduction by AAV serotype-2 are low, an observation linked to deficiencies in endothelial cell binding, sequestration of virions in the extracellular matrix and/or virion degradation by the proteasome. Strategies to improve transduction of endothelial cells include AAV-2 capsid targeting using small peptides isolated by phage display or the use of alternate serotypes. Previously, we have shown that AAV serotypes-3 through -6 transduce endothelial cells with poor efficiency. Recently, AAV serotypes-7 and -8 have been shown to mediate efficient transduction of the skeletal muscle and liver, respectively, although their infectivity profile for vascular cells has not been addressed. Here, we show that AAV-7 and -8 also transduce endothelial cells with poor efficiency and the levels of transgene expression are markedly enhanced by inhibition of the proteasome. In both cases proteasome blockade enhances the nuclear translocation of virions. We further show that this is vascular cell-type selective since transduction of smooth muscle cells is not sensitive to proteasome inhibition. Analysis in intact blood vessels corroborated these findings and suggests that proteasome degradation is a common limiting factor for endothelial cell transduction by AAV vectors.

    Topics: Animals; Aorta, Thoracic; Cell Line; Cells, Cultured; Dependovirus; DNA, Viral; Endothelial Cells; Genetic Therapy; Genetic Vectors; Humans; Leupeptins; Mice; Muscle, Smooth, Vascular; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Rats; Rats, Inbred WKY; Saphenous Vein; Serotyping; Transduction, Genetic

2005
Induction of apoptosis by the proteasome inhibitor MG132 in human HCC cells: Possible correlation with specific caspase-dependent cleavage of beta-catenin and inhibition of beta-catenin-mediated transactivation.
    International journal of molecular medicine, 2004, Volume: 13, Issue:5

    Proteasome inhibitors, like MG132, can exert cell growth inhibitory and apoptotic effects in different tumor types. The apoptotic mechanism of these compounds involves the activation of the effector caspases. beta-catenin, also an oncogene, represents one of the substrates of these proteases, but the consequences of its cleavage are poorly understood. We investigated its function during apoptosis induced by MG132 in three hepatocellular carcinoma (HCC) cell lines, endowed (HepG2 and HuH-6) or not (HA22T/VGH) with activating mutations of beta-catenin. Induction of apoptosis was associated with cell growth inhibition, accumulation of the cells at the G(2)/M phases of the cell cycle, as well as with fragmentation of beta-catenin (but not of alpha- or gamma-catenin) in all the cell lines. The cleavage of beta-catenin was inhibited by the caspase inhibitors Z-VAD-fmk and Z-DEVD-fmk. Fragmented beta-catenin was found in the nuclei of the treated cells. Analyses through the reporter plasmid pTOPflash showed that MG132 significantly reduces Tcf transcriptional activity in the cells. This was associated with a decrease in the mRNA expression of survivin and c-myc, which are target genes of the APC/beta-catenin/Tcf signaling. Nevertheless, Z-VAD-fmk or Z-DEVD-fmk did not reverse the MG132 effects on Tcf transcriptional activity, suggesting that the compound may affect this activity also by other mechanisms. Overall, the present study supports the therapeutic potential of the proteasome inhibitors in HCC.

    Topics: alpha Catenin; Amino Acid Chloromethyl Ketones; Apoptosis; beta Catenin; Carcinoma, Hepatocellular; Caspase Inhibitors; Caspases; Cell Division; Cell Line, Tumor; Cell Nucleus; Cysteine Proteinase Inhibitors; Cytoskeletal Proteins; Cytosol; Desmoplakins; DNA-Binding Proteins; G2 Phase; gamma Catenin; Humans; Inhibitor of Apoptosis Proteins; Leupeptins; Lymphoid Enhancer-Binding Factor 1; Microtubule-Associated Proteins; Neoplasm Proteins; Oligopeptides; Peptide Fragments; Proto-Oncogene Proteins c-myc; RNA, Messenger; Survivin; Trans-Activators; Transcription Factors; Transcriptional Activation

2004
Transcriptional repression of E2F gene by proteasome inhibitors in human osteosarcoma cells.
    Biochemical and biophysical research communications, 2004, Jun-11, Volume: 318, Issue:4

    E2F family of transcription factors regulates the transcription of genes required for DNA synthesis. E2F is itself controlled by a series of transcriptional and post-transcriptional pathways. Here we provide evidence that proteasome inhibitor-mediated E2F1 gene down-regulation is regulated by transcriptional events. Using the proteasome-specific inhibitors, MG132 and lactacystin, we show that the p53, the cdk inhibitors p21 and p27, and cyclin A are degraded by the ubiquitin-proteasome pathway in human osteosarcoma cells. Interestingly, the expression levels of E2F1 and E2F2 are down-regulated by proteasome inhibitors. E2F promoter and RT-PCR assay clearly demonstrated that proteasome inhibitors could reduce E2F transcriptional activation. However, MG132-induced repression of E2F1 and E2F2 is not associated with ROS generation.

    Topics: Acetylcysteine; Antioxidants; Cell Cycle Proteins; Cell Line, Tumor; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; DNA-Binding Proteins; Down-Regulation; E2F Transcription Factors; E2F1 Transcription Factor; E2F2 Transcription Factor; Glutathione; Humans; Leupeptins; Multienzyme Complexes; Osteosarcoma; Transcription Factors; Transcription, Genetic; Transfection

2004
Phosphorylation of the histone deacetylase 7 modulates its stability and association with 14-3-3 proteins.
    The Journal of biological chemistry, 2004, Aug-13, Volume: 279, Issue:33

    Class II histone deacetylases (HDACs) play a role in myogenesis and inhibit transcriptional activation by myocyte enhancer factors 2. A distinct feature of class II HDACs is their ability to shuttle between the nucleus and the cytoplasm in a cell type- and signal-dependent manner. We demonstrate here that treatment with the 26 S proteosome inhibitors, MG132 and ALLN, leads to detection of ubiquitinated HDAC7 and causes accumulation of cytoplasmic HDAC7. We also show that treatment with calyculin A, a protein phosphatase inhibitor, leads to a marked increase of HDAC7 but not HDAC5. The increase in HDAC7 is accompanied by enhanced interaction between 14-3-3 proteins and HDAC7. HDAC7 mutations that prevent the interaction with 14-3-3 proteins also block calyculin A-mediated stabilization. Expression of constitutively active calcium/calmodulin-dependent kinase I stabilizes HDAC7 and causes an increased association between HDAC7 and 14-3-3. Together, our results suggest that calcium/calmodulin-dependent kinase I-mediated phosphorylation of HDAC7 acts, in part, to promote association of HDAC7 with 14-3-3 and stabilizes HDAC7.

    Topics: 14-3-3 Proteins; Cell Line; Cell Nucleus; Cysteine Proteinase Inhibitors; Cytoplasm; Enzyme Inhibitors; Histone Deacetylases; Humans; Leupeptins; Marine Toxins; Models, Biological; Mutation; Oxazoles; Peptide Hydrolases; Phosphorylation; Plasmids; Proteasome Endopeptidase Complex; Protein Binding; Protein Biosynthesis; Time Factors; Transcription, Genetic; Transcriptional Activation; Transfection; Tyrosine 3-Monooxygenase; Up-Regulation

2004
Ubiquitin-proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation.
    Mechanisms of development, 2004, Volume: 121, Issue:10

    Degradation of proteins mediated by ubiquitin-proteasome pathway (UPP) plays important roles in the regulation of eukaryotic cell cycle. In this study, the functional roles and regulatory mechanisms of UPP in mouse oocyte meiotic maturation, fertilization, and early embryonic cleavage were studied by drug-treatment, Western blot, antibody microinjection, and confocal microscopy. The meiotic resumption of both cumulus-enclosed oocytes and denuded oocytes was stimulated by two potent, reversible, and cell-permeable proteasome inhibitors, ALLN and MG-132. The metaphase I spindle assembly was prevented, and the distribution of ubiquitin, cyclin B1, and polo-like kinase 1 (Plk1) was also distorted. When UPP was inhibited, mitogen-activated protein kinase (MAPK)/p90rsk phosphorylation was not affected, but the cyclin B1 degradation that occurs during normal metaphase-anaphase transition was not observed. During oocyte activation, the emission of second polar body (PB2) and the pronuclear formation were inhibited by ALLN or MG-132. In oocytes microinjected with ubiquitin antibodies, PB2 emission and pronuclear formation were also inhibited after in vitro fertilization. The expression of cyclin B1 and the phosphorylation of MAPK/p90rsk could still be detected in ALLN or MG-132-treated oocytes even at 8 h after parthenogenetic activation or insemination, which may account for the inhibition of PB2 emission and pronuclear formation. We also for the first time investigated the subcellular localization of ubiquitin protein at different stages of oocyte and early embryo development. Ubiquitin protein was accumulated in the germinal vesicle (GV), the region between the separating homologous chromosomes, the midbody, the pronuclei, and the region between the separating sister chromatids. In conclusion, our results suggest that the UPP plays important roles in oocyte meiosis resumption, spindle assembly, polar body emission, and pronuclear formation, probably by regulating cyclin B1 degradation and MAPK/p90rsk phosphorylation.

    Topics: Animals; Antibodies; Cell Cycle Proteins; Cyclin B; Cyclin B1; Cysteine Proteinase Inhibitors; Female; Fertilization in Vitro; Leupeptins; MAP Kinase Signaling System; Meiosis; Mice; Oocytes; Parthenogenesis; Polo-Like Kinase 1; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Kinases; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Subcellular Fractions; Ubiquitin

2004
Proteasome-mediated degradation of RNase L in response to phorbol-12-myristate-13-acetate (PMA) treatment of mouse L929 cells.
    Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research, 2003, Volume: 23, Issue:10

    2'-5' Oligoadenylate (2-5A)-dependent RNase L is one of the key enzymes involved in the molecular mechanisms of interferon (IFN) function. Although the regulation of RNase L by 2-5A has been studied extensively, relatively little is known about how RNase L is controlled by posttranslational processes. Here, we report that phorbol-12-myristate-13-acetate (PMA) treatment of mouse L929 fibroblasts caused rapid degradation of RNase L in a dose-dependent and time-dependent manner. RNase L levels were decreased to 40% of control levels after only 5 min exposure of cells to PMA, suggesting the involvement of protein kinase C (PKC). After PMA treatment for 1 h, RNase L levels decreased to 18% of the pretreatment levels. Decay of RNase L was measured by 2-5A binding assay, ribonuclease activity, and protein levels in Western blots probed with antibody to murine RNase L. PMA treatment caused decreases in the levels of RNase L in both cytoplasm and nucleus. To explore the mechanism of RNase L degradation, we treated cells with the selective proteasome inhibitors, ALLN, MG132, and PSI, prior to PMA treatment. These inhibitors completely blocked the degradation of RNase L caused by PMA. Our results show a novel regulatory pathway for RNase L that could have an impact on its antitumor and antiviral functions.

    Topics: Animals; Apoptosis; Cell Line; Cell Nucleus; Cysteine Endopeptidases; Cytoplasm; Down-Regulation; Endoribonucleases; Interferon-alpha; Leupeptins; Mice; Multienzyme Complexes; Oligopeptides; Proteasome Endopeptidase Complex; Protein Transport; Tetradecanoylphorbol Acetate

2003
Role of proteasomal degradation in the cell cycle-dependent regulation of DNA topoisomerase IIalpha expression.
    Biochemical pharmacology, 2001, Apr-01, Volume: 61, Issue:7

    1DNA topoisomerase II (topo II) is a nuclear enzyme that modifies DNA topology and also serves as a target to mediate the cytotoxicity of several antineoplastic agents. Several reports have demonstrated that a reduction of topo II is associated with reduced sensitivity to these agents. Topo II exists as two isoforms in mammalian cells: topo IIalpha and topo IIbeta. In MCF-7 cells, the half-life (mean +/- SEM) values of topo IIalpha and topo IIbeta in situ were 6.6 +/- 0.3 and 17.6 +/- 2.3 hr, respectively, as determined by [(35)S]methionine/cysteine pulse-chase analysis. Degradation of topo IIalpha in situ was abrogated by the presence of proteasome inhibitors, and the relative activities were carbobenzoxy-leucyl-leucyl-leucinal (MG132) > carbobenzoxy-leucyl-leucyl-norvalinal (MG115) > ALLN congruent with lactacystin. ATP-dependent degradation of topo IIalpha, but not topo IIbeta, was observed in extracts of asynchronously dividing HeLa and MCF-7 cells. Furthermore, degradation of topo IIalpha was abrogated by the proteasome inhibitors MG132 and MG115, but not by lactacystin, in extracts of asynchronously dividing MCF-7 cells. Finally, degradation of topo IIalpha, but not topo IIbeta, was observed to occur in a cell cycle-dependent fashion, in extracts of synchronized HeLa cells, with maximal loss of the alpha isoform occurring 2 hr after release from mitotic arrest. This degradation of topo IIalpha appeared to be facilitated by an ATP-dependent activity. Furthermore, high molecular weight bands (>200 kDa), which may represent polyubiquitinated-topo IIalpha conjugates, were also detected in extracts of synchronized HeLa cells. This study provides evidence for a role of the ubiquitin-proteasome pathway in the cell cycle-dependent regulation of topo IIalpha expression.

    Topics: Acetylcysteine; Adenosine Triphosphate; Antigens, Neoplasm; Cell Cycle; Cell Extracts; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; DNA Topoisomerases, Type II; DNA-Binding Proteins; HeLa Cells; Humans; Isoenzymes; Leupeptins; Multienzyme Complexes; Proteasome Endopeptidase Complex; Tumor Cells, Cultured

2001
Proteasome-mediated degradation of BRCA1 protein in MCF-7 human breast cancer cells.
    International journal of oncology, 2001, Volume: 19, Issue:4

    The breast and ovarian cancer susceptibility gene BRCA1 encodes a nuclear phosphoprotein, which functions as a tumor suppressor gene. We present several lines of evidence for the mechanism of BRCA1 degradation through the ubiquitin-proteasome pathway by using specific inhibitors of the proteasome in human MCF-7 breast carcinoma cells. The levels of BRCA1 protein were up-regulated by proteasome inhibitors, such as MG-132 and ALLnL, suggesting rapid degradation via the ubiquitin-proteasome pathway. The enhanced loss of BRCA1 protein by taxol, okadaic acid or nocodazole treatment was prevented by the proteasome inhibitors, while inhibition of other proteases was ineffective. Accumulation and proteasomal degradation of BRCA1 protein appear to be restricted entirely to the nucleus. We also detected that high molecular weight BRCA1 protein species appeared after proteasome inhibitor treatments, which indicated that ubiquitinated species were present. Moreover the half-life of BRCA1 protein was significantly increased in response to inhibition of proteasome activity. Our present data demonstrate that BRCA1 protein may be degraded through the ubiquitin-proteasome mediated pathway.

    Topics: Apoptosis; Blotting, Western; BRCA1 Protein; CDC2-CDC28 Kinases; Cell Cycle; Cyclin G; Cyclin G1; Cyclin-Dependent Kinase 2; Cyclin-Dependent Kinase 4; Cyclin-Dependent Kinases; Cyclins; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Fluorescent Antibody Technique; Humans; Leupeptins; Multienzyme Complexes; Paclitaxel; Poly(ADP-ribose) Polymerases; Proteasome Endopeptidase Complex; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Tumor Cells, Cultured; Tumor Suppressor Protein p53; Up-Regulation

2001
Proteasome-mediated degradation of the papillomavirus E2-TA protein is regulated by phosphorylation and can modulate viral genome copy number.
    Journal of virology, 2000, Volume: 74, Issue:13

    The bovine papillomavirus E2 proteins regulate viral transcription, replication, and episomal genome maintenance. We have previously mapped the major phosphorylation sites of the E2 proteins to serine residues 298 and 301 and shown that mutation of serine residue 301 to alanine leads to a dramatic (10- to 20-fold) increase in viral DNA copy number. In this study we analyzed how phosphorylation regulates E2 protein function. S301 is located in a PEST sequence; these sequences are often found in proteins with a short half-life and can be regulated by phosphorylation. We show here that the E2 protein is ubiquitinated and degraded by the proteasome. Mutation of serine 301 to alanine increases the half-life of E2 from approximately 50 min to 160 min. Furthermore, the A301 E2 protein shows greatly reduced ubiquitination and degradation by the proteasome. These results suggest that the E2 protein level is regulated by phosphorylation, which in turn determines viral episomal copy number.

    Topics: Alanine; Animals; Bovine papillomavirus 1; Cattle; Cell Line; Chlorocebus aethiops; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; DNA-Binding Proteins; DNA, Viral; Gene Dosage; Genome, Viral; Lactones; Leupeptins; Multienzyme Complexes; Mutagenesis, Site-Directed; Papilloma; Papillomavirus Infections; Phosphorylation; Proteasome Endopeptidase Complex; Serine; Viral Proteins; Warts

2000
Prevention of etoposide-induced apoptosis by proteasome inhibitors in a human leukemic cell line but not in fresh acute leukemia blasts. A differential role of NF-kappab activation.
    Biochemical pharmacology, 2000, Sep-15, Volume: 60, Issue:6

    Recent research indicates that the proteasome is one of the non-caspase proteases involved in apoptotic signaling pathways. Nuclear factor-kappaB (NF-kappaB) activation, one of the key factors in apoptosis, can be prevented through abrogation of IkappaBalpha degradation by proteasome inhibition. We have investigated the effects of the proteasome inhibitors carbobenzoxyl-L-leucyl-L-leucyl-L-leucinal (MG132) and N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal (LLnL) on apoptosis and NF-kappaB activation induced by etoposide, using a human leukemia cell line (U937) and leukemia blasts freshly isolated from patients with acute leukemia. Pretreatment of U937 cells with MG132 or LLnL inhibited etoposide-induced morphological apoptosis and caspase-3 activation. Furthermore, MG132 or LLnL prevented NF-kappaB activation and IkappaBalpha degradation, but not IkappaBalpha phosphorylation at Ser32. Other inhibitors of NF-kappaB activation, including pyrrrolidine dithiocarbamate (an antioxidant) and the peptide SN50 (an inhibitor of translocation of activated NF-kappaB into the nucleus), also attenuated etoposide-induced apoptosis. In leukemia blasts, although proteasome inhibitors suppressed NF-kappaB activation induced by etoposide, they were unable to prevent morphological apoptosis. Moreover, proteasome inhibitors by themselves caused apoptosis in leukemia blasts at the concentrations employed in this study. These results suggest that the role that NF-kappaB plays in apoptosis induced by etoposide in a human leukemia cell line may be different from the role it plays in freshly isolated leukemia blasts.

    Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Caspase 3; Caspases; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; DNA-Binding Proteins; Etoposide; Humans; I-kappa B Proteins; Leupeptins; Multienzyme Complexes; NF-kappa B; NF-KappaB Inhibitor alpha; Phosphorylation; Precursor Cell Lymphoblastic Leukemia-Lymphoma; Proteasome Endopeptidase Complex; Tumor Cells, Cultured; U937 Cells

2000
The ubiquitin-proteasome pathway mediates the regulated degradation of mammalian 3-hydroxy-3-methylglutaryl-coenzyme A reductase.
    The Journal of biological chemistry, 2000, Nov-17, Volume: 275, Issue:46

    3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), the key regulatory enzyme in the mevalonate (MVA) pathway, is rapidly degraded in mammalian cells supplemented with sterols or MVA. This accelerated turnover was blocked by N-acetyl-leucyl-leucyl-norleucinal (ALLN), MG-132, and lactacystin, and to a lesser extent by N-acetyl-leucyl-leucyl-methional (ALLM), indicating the involvement of the 26 S proteasome. Proteasome inhibition led to enhanced accumulation of high molecular weight polyubiquitin conjugates of HMGR and of HMGal, a chimera between the membrane domain of HMGR and beta-galactosidase. Importantly, increased amounts of polyubiquitinated HMGR and HMGal were observed upon treating cells with sterols or MVA. Cycloheximide inhibited the sterol-stimulated degradation of HMGR concomitantly with a marked reduction in polyubiquitination of the enzyme. Inhibition of squalene synthase with zaragozic acid blocked the MVA- but not sterol-stimulated ubiquitination and degradation of HMGR. Thus, similar to yeast, the ubiquitin-proteasome pathway is involved in the metabolically regulated turnover of mammalian HMGR. Yet, the data indicate divergence between yeast and mammals and suggest distinct roles for sterol and nonsterol metabolic signals in the regulated ubiquitination and degradation of mammalian HMGR.

    Topics: Animals; beta-Galactosidase; Bridged Bicyclo Compounds, Heterocyclic; Cell Line; Cholesterol; Cricetinae; Cycloheximide; Cysteine Proteinase Inhibitors; Farnesyl-Diphosphate Farnesyltransferase; Humans; Hydroxycholesterols; Hydroxymethylglutaryl CoA Reductases; Leupeptins; Lovastatin; Oligopeptides; Peptide Hydrolases; Precipitin Tests; Proteasome Endopeptidase Complex; Recombinant Fusion Proteins; Tricarboxylic Acids; Ubiquitins

2000
Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A.
    Science (New York, N.Y.), 1999, Mar-26, Volume: 283, Issue:5410

    Dysregulation of Wnt-beta-catenin signaling disrupts axis formation in vertebrate embryos and underlies multiple human malignancies. The adenomatous polyposis coli (APC) protein, axin, and glycogen synthase kinase 3beta form a Wnt-regulated signaling complex that mediates the phosphorylation-dependent degradation of beta-catenin. A protein phosphatase 2A (PP2A) regulatory subunit, B56, interacted with APC in the yeast two-hybrid system. Expression of B56 reduced the abundance of beta-catenin and inhibited transcription of beta-catenin target genes in mammalian cells and Xenopus embryo explants. The B56-dependent decrease in beta-catenin was blocked by oncogenic mutations in beta-catenin or APC, and by proteasome inhibitors. B56 may direct PP2A to dephosphorylate specific components of the APC-dependent signaling complex and thereby inhibit Wnt signaling.

    Topics: Adenomatous Polyposis Coli Protein; Animals; beta Catenin; Calcium-Calmodulin-Dependent Protein Kinases; Cell Line; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Cytoskeletal Proteins; Down-Regulation; Genes, Reporter; Glycogen Synthase Kinase 3; Glycogen Synthase Kinases; Humans; Leupeptins; Multienzyme Complexes; Mutation; Phosphoprotein Phosphatases; Phosphorylation; Proteasome Endopeptidase Complex; Protein Phosphatase 2; Proto-Oncogene Proteins; Signal Transduction; Trans-Activators; Transcriptional Activation; Transfection; Tumor Cells, Cultured; Wnt Proteins; Xenopus; Xenopus Proteins; Zebrafish Proteins

1999
Proteasome blockers inhibit TNF-alpha release by lipopolysaccharide stimulated macrophages and microglia: implications for HIV-1 dementia.
    Journal of neuroimmunology, 1999, Mar-01, Volume: 95, Issue:1-2

    HIV-1 infection of the central nervous system can cause severe neurologic disease although only microglial cells and brain macrophages are susceptible to productive viral infection. Substances secreted by infected cells are thought to cause disease indirectly. Tumor necrosis factor alpha (TNF-alpha) is one candidate neurotoxin and is upregulated during HIV-1 infection of the brain, likely via activation of the transcription factor NF-kappaB. We used the proteasome inhibitors, MG132 and ALLN (N-acetyl-Leu-Leu-Norleucinal), to inhibit NF-kappaB activation in primary human fetal microglia (PHFM) and primary monocyte derived-macrophages, and showed that they could block TNF-alpha release stimulated by lipopolysaccharide (LPS) or TNF-alpha. In addition, we performed electrophoretic mobility shift analysis and determined that in microglia, the p50/p65 heterodimer of NF-kappaB is activated by LPS stimulation, and is inhibited by MG132. Thus, blockade of NF-kappaB activation in microglia in vitro can decrease production of TNF-alpha and may prove to be a novel strategy for treating HIV-1 dementia.

    Topics: AIDS Dementia Complex; Cells, Cultured; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; DNA Probes; Enzyme Activation; Fetus; Gene Expression; HIV-1; Humans; Leupeptins; Lipopolysaccharides; Macrophages; Microglia; Multienzyme Complexes; NF-kappa B; Phagocytosis; Proteasome Endopeptidase Complex; Tumor Necrosis Factor-alpha

1999
Calpain inhibitor causes accumulation of ubiquitinated P-glycoprotein at the cell surface: possible role of calpain in P-glycoprotein turnover.
    International journal of oncology, 1999, Volume: 15, Issue:4

    P-glycoprotein (Pgp) is a plasma-membrane glycoprotein that confers multi-drug resistance (MDR) on cells and displays ATP-driven drug pumping. The possible contribution of calpain-mediated proteolytic pathways to the functional regulation of the Pgp molecule was evaluated using K562/DXR, MDR cells. N-Acetyl-L-leucyl-L-leucyl-norleucinal was effluxed by Pgp, but N-benzyloxycarbonyl-L-leucyl-L-leucinal (zLLal), an inhibitor of calpain, retarded the degradation of Pgp leading to accumulation of the molecule largely at the cell surface membrane. Treatment with brefeldin A did not obstruct the zLLal-induced Pgp accumulation. NH4Cl increased the cytoplasmic Pgp level, with a slight to significant decrease at the cell surface membrane. Ubiquitin-ELISA and western blot analysis confirmed that the Pgp molecule, which accumulated mainly at the cell surface, was ubiquitinated. However, lactacystin did not show any accumulation of Pgp in either the cytoplasm or the cell surface membrane, suggesting that the proteasome did not participate in the phenomenon. Additionally, the Pgp was limitedly proteolyzed by calpain into two 98 kDa and 69 kDa, fragments within one minute. Despite the increased accumulation of Pgp at the cell surface after treatment with calpain inhibitor, the cytoplasmic doxorubicin level of the cells treated with a calpain inhibitor was higher than that of non-treated cells and approached that of parental cells. These results indicated that calpain involved Pgp turnover and that calpain inhibition induced ubiquitinated Pgp-accumulation mainly at the cell surface membrane with a reduction in its own functions suggesting that the modulation of Pgp-turnover involves MDR-reversal by another approach.

    Topics: Acetylcysteine; Ammonium Chloride; ATP Binding Cassette Transporter, Subfamily B; Blotting, Western; Brefeldin A; Calpain; Cell Membrane; Cysteine Proteinase Inhibitors; Dipeptides; Doxorubicin; Enzyme-Linked Immunosorbent Assay; Glycoproteins; Humans; K562 Cells; Leucine; Leupeptins; Membrane Proteins; Protein Synthesis Inhibitors; Time Factors; Ubiquitins

1999
Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance.
    The Journal of biological chemistry, 1997, Apr-04, Volume: 272, Issue:14

    The accumulation of misfolded proteins in the cytosol leads to increased expression of heat-shock proteins, while accumulation of such proteins in the endoplasmic reticulum (ER) stimulates the expression of many ER resident proteins, most of which function as molecular chaperones. Recently, inhibitors of the proteasome have been identified that can block the rapid degradation of abnormal cytosolic and ER-associated proteins. We therefore tested whether these agents, by causing the accumulation of abnormal proteins, might stimulate the expression of cytosolic heat-shock proteins and/or ER molecular chaperones and thereby induce thermotolerance. Exposure of Madin-Darby canine kidney cells to various proteasome inhibitors, including the peptide aldehydes (MG132, MG115, N-acetyl-leucyl-leucyl-norleucinal) and lactacystin, inhibited the degradation of short-lived proteins and increased markedly the levels of mRNAs encoding cytosolic heat-shock proteins (Hsp70, polyubiquitin) and ER chaperones (BiP, Grp94, ERp72), as shown by Northern blot analysis. However, inhibitors of cysteine proteases (E64), serine proteases (leupeptin), or metalloproteases (1, 10-phenanthroline) had no effect on the levels of these mRNAs. The relative efficacies of the peptide aldehyde inhibitors in inducing these mRNAs correlated with their potencies against the proteasome. Furthermore, reduction of the aldehyde group of MG132 decreased its inhibitory effect on proteolysis and largely prevented the induction of these mRNAs. Although treatment with the proteasome inhibitors caused rapid increases in mRNA levels (as early as 2 h after treatment with MG132), the inhibitors did not detectably affect total protein synthesis, total protein secretion, ER morphology, or the retention of ER-lumenal proteins, even after 18 h of treatment. Together, the findings suggest that inhibition of proteasome function induces heat-shock proteins and ER chaperones due to the accumulation of sufficient amounts of abnormal proteins and/or the inhibition of degradation of a key regulatory factor (e.g. heat-shock factor). Since expression of heat-shock proteins can protect cells from thermal injury, we tested whether the proteasome inhibitors might also confer thermotolerance. Treatment of cells with MG132 for as little as 2 h, markedly increased the survival of cells subjected to high temperatures (up to 46 degrees C). Thus, these agents may have applications in protecting against cell injury.

    Topics: Acetylcysteine; Animals; Calpain; Cell Line; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Dogs; Endoplasmic Reticulum; Fungal Proteins; Heat-Shock Proteins; HSP70 Heat-Shock Proteins; Leupeptins; Membrane Glycoproteins; Membrane Proteins; Molecular Chaperones; Multienzyme Complexes; Proteasome Endopeptidase Complex; Protein Conformation; RNA, Messenger

1997
Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles.
    The Journal of clinical investigation, 1997, Jul-01, Volume: 100, Issue:1

    Several observations have suggested that the enhanced proteolysis and atrophy of skeletal muscle in various pathological states is due primarily to activation of the ubiquitin-proteasome pathway. To test this idea, we investigated whether peptide aldehyde inhibitors of the proteasome, N-acetyl-leucyl-leucyl-norleucinal (LLN), or the more potent CBZ-leucyl-leucyl-leucinal (MG132) suppressed proteolysis in incubated rat skeletal muscles. These agents (e.g., MG132 at 10 microM) inhibited nonlysosomal protein breakdown by up to 50% (P < 0.01), and this effect was rapidly reversed upon removal of the inhibitor. The peptide aldehydes did not alter protein synthesis or amino acid pools, but improved overall protein balance in the muscle. Upon treatment with MG132, ubiquitin-conjugated proteins accumulated in the muscle. The inhibition of muscle proteolysis correlated with efficacy against the proteasome, although these agents could also inhibit calpain-dependent proteolysis induced with Ca2+. These inhibitors had much larger effects on proteolysis in atrophying muscles than in controls. In the denervated soleus undergoing atrophy, the increase in ATP-dependent proteolysis was reduced 70% by MG132 (P < 0.001). Similarly, the rise in muscle proteolysis induced by administering thyroid hormones was reduced 40-70% by the inhibitors. Finally, in rats made septic by cecal puncture, the increase in muscle proteolysis was completely blocked by MG132. Thus, the enhanced proteolysis in many catabolic states (including denervation, hyperthyroidism, and sepsis) is due to a proteasome-dependent pathway, and inhibition of proteasome function may be a useful approach to reduce muscle wasting.

    Topics: Animals; Atrophy; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Diaphragm; Kinetics; Leupeptins; Male; Multienzyme Complexes; Muscle, Skeletal; Proteasome Endopeptidase Complex; Proteins; Rats; Rats, Inbred Strains

1997
Transcriptional squelching by ectopic expression of E2F-1 and p53 is alleviated by proteasome inhibitors MG-132 and lactacystin.
    Oncogene, 1997, Aug-14, Volume: 15, Issue:7

    The transcription factors p53 and E2F-1 play important roles in the control of cell cycle progression. In transient transfection experiments, expression of E2F-1, other E2F family members, or p53 squelched transcription from cotransfected plasmids in a dose-dependent manner. Although the proteasome inhibitors MG-132 and lactacystin markedly increased the level of expression of E2F-1 and p53, these inhibitors completely alleviated squelching by both proteins. Several observations indicate MG-132 alleviates squelching by influencing the conformation of newly synthesized p53 and E2F-1:MG-132 increased the fraction of wild type p53 bound by a monoclonal antibody which preferentially recognizes mutant conformers of p53, increased binding of hsp70 to p53 and inhibited nuclear accumulation of both p53 and E2F-1, but not the pocket protein p107. The protease inhibitors ALLN and ALLM did not influence expression of E2F-1 or p53, nor did they alleviate squelching by either transcription factor. Because MG-132 and lactacycstin are highly specific inhibitors of the proteasome protease, our results suggest that the proteasome influences post-translational processes involved in proper folding and cytoplasmic clearing of E2F-1 and p53.

    Topics: Acetylcysteine; Animals; beta-Galactosidase; Blotting, Northern; Carrier Proteins; Cell Cycle Proteins; CHO Cells; Cricetinae; Cycloheximide; Cysteine Proteinase Inhibitors; DNA-Binding Proteins; E2F Transcription Factors; E2F1 Transcription Factor; Leupeptins; Oligopeptides; Protein Synthesis Inhibitors; Retinoblastoma-Binding Protein 1; RNA, Messenger; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transfection; Tumor Suppressor Protein p53; Ubiquitins

1997
Proteolysis of erythrocyte-type and brain-type ankyrins in rat heart after postischemic reperfusion.
    Journal of biochemistry, 1997, Volume: 122, Issue:2

    Ankyrin links cytoskeleton and integral membrane proteins and is proteolyzed in vitro by calpain, a Ca2+-dependent protease. In the present study, we examined the localization of two ankyrin isoforms, erythrocyte (red blood cell)-type (ankyrin(R)) and brain-type (ankyrin(B)), and their proteolysis after ischemia-reperfusion in the subcellular fractions of perfused rat heart by immunoblotting and by immunohistochemistry using specific antibodies. Both isoforms were observed to be distributed chiefly in the myofibril-nucleus (1,OOOx g pellet: P1) fraction, while ankyrin(R) was located substantially in the membrane (100,000x g pellet: P2) fraction. Reperfusion after 10 min or more of global ischemia induced preferential proteolysis of ankyrin(R) in the P2 fraction and ankyrin(B) in the P1 fraction. The proteolysis of ankyrin(R), but not ankyrin(B), was effectively inhibited by the synthetic calpain inhibitor acethyl-leucyl-leucyl-norleucinal. The immunohistochemical examination showed that anti-ankyrin(R) delineated striations, sarcolemma and nuclei, and the staining was decreased after ischemia-reperfusion, while anti-ankyrin(B) showed diffuse staining. The proteolysis of ankyrin(R) may interfere with force conduction through disruption of the linkage between integral membrane proteins and the myofibril-cytoskeleton.

    Topics: Animals; Ankyrins; Brain; Calpain; Cell Fractionation; Cysteine Proteinase Inhibitors; Erythrocytes; In Vitro Techniques; Leupeptins; Male; Molecular Weight; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; Peptide Fragments; Rats; Rats, Wistar

1997
Proteasomes play an essential role in thymocyte apoptosis.
    The EMBO journal, 1996, Aug-01, Volume: 15, Issue:15

    Cell death in many different organisms requires the activation of proteolytic cascades involving cytosolic proteases. Here we describe a novel requirement in thymocyte cell death for the 20S proteasome, a highly conserved multicatalytic protease found in all eukaryotes. Specific inhibitors of proteasome function blocked cell death induced by ionizing radiation, glucocorticoids or phorbol ester. In addition to inhibiting apoptosis, these signals prevented the cleavage of poly(ADP-ribose) polymerase that accompanies many cell deaths. Since overall rates of protein degradation were not altered significantly during cell death in thymocytes, these results suggest that the proteasome may either degrade regulatory protein(s) that normally inhibit the apoptotic pathway or may proteolytically activate protein(s) than promote cell death.

    Topics: Acetylcysteine; Animals; Apoptosis; Blotting, Western; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Dexamethasone; DNA Ligases; Leupeptins; Mice; Mice, Inbred BALB C; Multienzyme Complexes; Proteasome Endopeptidase Complex; Proteins; T-Lymphocytes

1996
The proteasome pathway is required for cytokine-induced endothelial-leukocyte adhesion molecule expression.
    Immunity, 1995, Volume: 2, Issue:5

    Multiple cell adhesion proteins are up-regulated in vascular endothelial cells in response to TNF alpha and other inflammatory cytokines. This increase in cell adhesion gene expression is thought to require the transcription factor NF-kappa B. Here, we show that peptide aldehyde inhibitors of the proteasome, a multicatalytic protease recently shown to be required for the activation of NF-kappa B, block TNF alpha induction of the leukocyte adhesion molecules E-selectin, VCAM-1, and ICAM-1. Striking functional consequences of this inhibition were observed in analyses of leukocyte-endothelial interactions under defined flow conditions. Lymphocyte attachment to TNF alpha-treated endothelial monolayers was totally blocked, while neutrophil attachment was partially reduced but transmigration was essentially prevented.

    Topics: Base Sequence; Calpain; Cell Adhesion; Cell Adhesion Molecules; Cells, Cultured; Cysteine Endopeptidases; E-Selectin; Endothelium, Vascular; Gene Expression; Humans; In Vitro Techniques; Intercellular Adhesion Molecule-1; Interleukin-8; Leukocytes; Leupeptins; Molecular Sequence Data; Multienzyme Complexes; NF-kappa B; Oligodeoxyribonucleotides; Proteasome Endopeptidase Complex; Proto-Oncogene Proteins; RNA, Messenger; Time Factors; Transcription Factor RelB; Transcription Factors; Tumor Necrosis Factor-alpha; Vascular Cell Adhesion Molecule-1

1995
Multiple proteolytic systems, including the proteasome, contribute to CFTR processing.
    Cell, 1995, Oct-06, Volume: 83, Issue:1

    The molecular components of the quality control system that rapidly degrades abnormal membrane and secretory proteins have not been identified. The cystic fibrosis transmembrane conductance regulator (CFTR) is an integral membrane protein to which this quality control is stringently applied; approximately 75% of the wild-type precursor and 100% of the delta F508 CFTR variant found in most CF patients are rapidly degraded before exiting from the ER. We now show that this ER degradation is sensitive to inhibitors of the cytosolic proteasome, including lactacystin and certain peptide aldehydes. One of the latter compounds, MG-132, also completely blocks the ATP-dependent conversion of the wild-type precursor to the native folded form that enables escape from degradation. Hence, CFTR and presumably other intrinsic membrane proteins are substrates for proteasomal degradation during their maturation within the ER.

    Topics: Acetylcysteine; Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; CHO Cells; Cricetinae; Cysteine Endopeptidases; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endopeptidases; Endoplasmic Reticulum; Humans; Leupeptins; Multienzyme Complexes; Oligopeptides; Proteasome Endopeptidase Complex; Protein Processing, Post-Translational; Recombinant Fusion Proteins; Ubiquitins

1995
The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B.
    Cell, 1994, Sep-09, Volume: 78, Issue:5

    We demonstrate an essential role for the proteasome complex in two proteolytic processes required for activation of the transcription factor NF-kappa B. The p105 precursor of the p50 subunit of NF-kappa B is processed in vitro by an ATP-dependent process that requires proteasomes and ubiquitin conjugation. The C-terminal region of p105 is rapidly degraded, leaving the N-terminal p50 domain. p105 processing can be blocked in intact cells with inhibitors of the proteasome or in yeast with proteasome mutants. These inhibitors also block the activation of NF-kappa B and the rapid degradation of I kappa B alpha induced by tumor necrosis factor alpha. Thus, the ubiquitin-proteasome pathway functions not only in the complete degradation of polypeptides, but also in the regulated processing of precursors into active proteins.

    Topics: Adenosine Triphosphate; Amino Acid Sequence; Animals; Cells, Cultured; Cysteine Endopeptidases; DNA-Binding Proteins; Humans; I-kappa B Proteins; Leupeptins; Models, Biological; Molecular Sequence Data; Multienzyme Complexes; NF-kappa B; NF-kappa B p50 Subunit; NF-KappaB Inhibitor alpha; Protease Inhibitors; Proteasome Endopeptidase Complex; Protein Precursors; Protein Processing, Post-Translational; Ubiquitins

1994