benzyloxycarbonylleucyl-leucyl-leucine-aldehyde and 3-methyladenine

benzyloxycarbonylleucyl-leucyl-leucine-aldehyde has been researched along with 3-methyladenine* in 18 studies

Other Studies

18 other study(ies) available for benzyloxycarbonylleucyl-leucyl-leucine-aldehyde and 3-methyladenine

ArticleYear
Differential Ubiquitination as an Effective Strategy Employed by the Blood-Brain Barrier for Prevention of Bacterial Transcytosis.
    Journal of bacteriology, 2022, 01-18, Volume: 204, Issue:1

    The protective mechanisms of blood-brain barrier (BBB) prohibiting entry of pathogens into central nervous system (CNS) are critical for maintenance of brain homeostasis. These include various intracellular defense mechanisms that are vital to block transcytosis of neurotropic pathogens into the CNS. However, mechanistic details of coordination between these defense pathways remain unexplored. In this study, we established that BBB-driven ubiquitination acts as a major intracellular defense mechanism for clearance of Streptococcus pneumoniae, a critical neurotropic pathogen, during transit through BBB. Our findings suggest that the BBB employs differential ubiquitination with either K48- or K63-ubiquitin (Ub) chain topologies as an effective strategy to target S. pneumoniae toward diverse killing pathways. While K63-Ub decoration triggers autophagic killing, K48-Ub directs S. pneumoniae exclusively toward proteasomes. Time-lapse fluorescence imaging involving proteasomal marker LMP2 revealed that in the BBB, the majority of the ubiquitinated S. pneumoniae was cleared by proteasome. Fittingly, inhibition of proteasome and autophagy pathway led to accumulation of K48-Ub- and K63-Ub-marked S. pneumoniae, respectively, and triggered significant increases in intracellular S. pneumoniae burden. Moreover, genetic impairment of either K48- or K63-Ub chain formation demonstrated that although both chain types are key in disposal of intracellular S. pneumoniae, K48-Ub chains and subsequent proteasomal degradation have more pronounced contributions to intracellular S. pneumoniae killing in the BBB. Collectively, these observations, for the first time, illustrated a pivotal role of differential ubiquitination deployed by BBB in orchestrating a symphony of intracellular defense mechanisms for interception and degradation of S. pneumoniae, blocking its entry into the brain, which could be exploited to prevent bacterial CNS infections.

    Topics: Adenine; Anti-Bacterial Agents; Autophagy; Biomarkers; Blood-Brain Barrier; Cell Line; Cell Survival; Endothelial Cells; Gene Expression Regulation, Bacterial; Gentamicins; Humans; Leupeptins; Optical Imaging; Penicillins; Proteasome Endopeptidase Complex; Streptococcus pneumoniae; Ubiquitination; Ubiquitins

2022
Two mechanisms involving the autophagic and proteasomal pathways process the metastasis suppressor protein, N-myc downstream regulated gene 1.
    Biochimica et biophysica acta. Molecular basis of disease, 2019, 06-01, Volume: 1865, Issue:6

    N-myc downstream regulated gene 1 (NDRG1) is an intriguing metastasis suppressor protein, which plays an important role in suppressing multiple oncogenic signaling pathways. Interestingly, multiple isoforms of NDRG1 have been identified, although the molecular mechanisms involved in their generation remains elusive. Herein, we demonstrate the role of two mechanisms involving autophagic and proteasomal machinery as part of an intricate system to generate different NDRG1 isoforms. Examining multiple pancreatic cancer cell-types using immunoblotting demonstrated three major isoforms of NDRG1 at approximately 41-, 46- and 47-kDa. The top NDRG1 band at 47-kDa was shown to be processed by the proteasome, followed by autophagic metabolism of the middle NDRG1 band at 46-kDa. The role of the proteasomal and autophagic pathways in NDRG1 processing was further confirmed by co-localization analysis of confocal images using PSMD9 and LC3 as classical markers of these respective pathways. All NDRG1 isoforms were demonstrated to be, at least in part, phosphorylated forms of the protein. Inhibition of two well-characterized upstream kinases of NDRG1, namely GSK3β and SGK1, resulted in decreased levels of the top NDRG1 band. Studies demonstrated that inhibition of GSK3β decreased levels of the top 47-kDa NDRG1 band, independent of its kinase activity, and this effect was not mediated via the proteasomal pathway. In contrast, the decrease in the top NDRG1 band at 47-kDa after SGK1 inhibition, was due to suppression of its kinase activity. Overall, these studies elucidated the complex and intricate regulatory pathways involving both proteasomal and autophagic processing of the metastasis suppressor protein, NDRG1.

    Topics: Adenine; Antineoplastic Agents; Autophagy; Benzoates; Bridged Bicyclo Compounds, Heterocyclic; Cell Cycle Proteins; Cell Line, Tumor; Cell Movement; Epithelial Cells; Gene Expression Regulation, Neoplastic; Glycogen Synthase Kinase 3 beta; Humans; Immediate-Early Proteins; Intracellular Signaling Peptides and Proteins; Iron Chelating Agents; Leupeptins; Macrolides; Microtubule-Associated Proteins; Pancreatic Ducts; Phosphorylation; Proteasome Endopeptidase Complex; Protein Isoforms; Protein Serine-Threonine Kinases; Proteolysis; Signal Transduction; Thiosemicarbazones

2019
NPAS4 Facilitates the Autophagic Clearance of Endogenous Tau in Rat Cortical Neurons.
    Journal of molecular neuroscience : MN, 2016, Volume: 58, Issue:4

    Tau, a microtubule-binding phosphoprotein, plays a critical role in the stabilisation of microtubules and neuronal function. However, hyperphosphorylated tau is involved in the pathogenesis of Alzheimer's disease (AD) and other tauopathies. The facilitation of tau clearance is now regarded as a valid therapeutic strategy for these neurodegenerative tauopathies. Here, we provide the first demonstration that the over-expression of neuronal PAS domain protein 4 (NPAS4)-induced autophagy and effectively facilitated the clearance of endogenous total and phosphorylated tau in rat primary cortical neurons. Moreover, the activation of autophagy by serum depletion significantly decreased endogenous total and phosphorylated tau levels. Autophagy inhibitors, such as 3-methyladenine (3-MA) and chloroquine (CQ), induced tau aggregation. However, NPAS4 over-expression reversed the aggregation of tau that was induced by the inhibition of autophagy. Interestingly, proteasome inhibition by MG132, had no effect on autophagy, but did reduce tau levels, indicating that NPAS4 may also degrade tau proteins through an unknown proteasome-mediated mechanism. Furthermore, NPAS4 did not alter the activity of two major tau kinases, glycogen synthase kinase 3β (GSK3β) and cyclin-dependent kinase 5 (CDK5). Taken together, the results indicate that targeting NPAS4 could provide a therapeutic approach for the treatment of AD and other tauopathies.

    Topics: Adenine; Animals; Autophagy; Basic Helix-Loop-Helix Transcription Factors; Cells, Cultured; Cerebral Cortex; Chloroquine; Cyclin-Dependent Kinase 5; Glycogen Synthase Kinase 3; Leupeptins; Neurons; Proteolysis; Rats; Rats, Sprague-Dawley; tau Proteins

2016
Induction of autophagy by the MG‑132 proteasome inhibitor is associated with endoplasmic reticulum stress in MCF‑7 cells.
    Molecular medicine reports, 2016, Volume: 13, Issue:1

    The aim of the present study was to investigate whether endoplasmic reticulum (ER) stress is involved in MG‑132‑induced autophagy, and to determine the effects of the inhibition of autophagy and ER stress on cell viability following MG‑132 treatment. The proteasome inhibitor, MG‑132, was used to induce autophagy in MCF‑7 cells, and 3‑methyladenine (3‑MA) and salubrinal were used to inhibit autophagy and ER stress, respectively. An MTT assay was used to analyze cell viability. Apoptosis and the cell cycle were analyzed using flow cytometry. The expression levels of apoptosis‑ and ER stress‑associated genes were investigated using western blot and reverse transcription‑quantitative polymerase chain reaction analyses. MG‑132 inhibited cell proliferation, and induced apoptosis and cell cycle arrest at the G2 phase of the cell cycle. Notably, MG‑132 increased the autophagy‑associated conversion of microtubule‑associated protein 1 light chain 3 (LC3)‑I to LC3‑II, which was partially attenuated by the ER stress inhibitor, salubrinal. In addition, MG‑132 inhibited the protein expression of the anti‑apoptotic protein, B‑cell lymphoma (Bcl)‑2, whereas the expression levels of Bcl‑2‑associated X protein and caspase‑3 were upregulated. These effects were enhanced by co‑treatment with either 3‑MA or salubrinal. Furthermore, the mRNA and protein levels of the ER stress‑associated genes, glucose‑regulated protein 78, growth arrest and DNA damage induced gene‑153, and caspase‑12, were upregulated by MG132, and these levels were significantly inhibited by co‑treatment of the cells with salubrinal. Taken together, the results of the present study indicated that the induction of autophagy by the proteasome inhibitor was associated with ER stress in the MCF‑7 cells, and that the inhibition of autophagy or ER stress enhanced MG‑132‑induced apoptosis. These findings suggest the potential application of inhibitors of ER stress and autophagy, in combination with proteasomal inhibitors, for the development of combinatorial targeted cancer therapy.

    Topics: Adenine; Apoptosis; Autophagy; Cinnamates; Drug Synergism; Endoplasmic Reticulum Stress; Humans; Leupeptins; MCF-7 Cells; Proteasome Inhibitors; Thiourea

2016
Associations between autophagy, the ubiquitin-proteasome system and endoplasmic reticulum stress in hypoxia-deoxygenation or ischemia-reperfusion.
    European journal of pharmacology, 2016, Nov-15, Volume: 791

    The activation of autophagy has been demonstrated to exert protective roles during hypoxia-reoxygenation (H/R)-induced brain injuries. This study aimed to investigate whether and how preconditioning with a proteasome inhibitor (MG-132), a proteasome promoter (Adriamycin, ADM), an autophagy inhibitor (3-methyladenine, 3-MA) and an autophagy promoter (Rapamycin, Rap) affected endoplasmic reticulum stress (ERS), the ubiquitin-proteasome system (UPS), autophagy, inflammation and apoptosis. Ubiquitin protein and 26S proteasome activity levels were decreased by MG-132 pretreatment but increased by ADM pretreatment at 2h, 4h and 6h following H/R treatment. MG-132 pretreatment led to the increased expression of autophagy-related genes, ER stress-associated genes and IκB but decreased the expression levels of NF-κB and caspase-3. ADM pretreatment led to the decreased expression of autophagy-related genes, ERS-associated genes and IκB but increased the expression of NF-κB and caspase-3. Pretreatment with 3-MA reduced the expression of autophagy-related genes, autophagy and UPS co-related genes, as well as apoptosis-related although the latter was increased by Rap pretreatment at 2h, 4h and 6h following H/R treatment. In vivo, pretreatment of rats with ADM, MG-132, 3-MA or Rap followed by ischemia-reperfusion (I/R) treatment resulted in similar changes. Proteasome inhibition preconditioning strengthened autophagy and ER stress but decreased apoptosis and inflammation. Autophagy promotion preconditioning exhibited similar changes. The combination of a proteasome inhibitor and an autophagy promoter might represent a new possible therapy to treat H/R or I/R injury-related diseases.

    Topics: Adenine; Animals; Apoptosis; Autophagy; Cell Hypoxia; Cell Line; Cell Survival; Doxorubicin; Endoplasmic Reticulum Stress; Histone Deacetylase 6; Histone Deacetylases; Leupeptins; Lung; Male; NF-kappa B; Oxygen; Proteasome Endopeptidase Complex; Rats; Reperfusion Injury; Sirolimus; Ubiquitin

2016
Proteasome inhibitor-induced autophagy in PC12 cells overexpressing A53T mutant α-synuclein.
    Molecular medicine reports, 2015, Volume: 11, Issue:3

    The aim of the present study was to examine the effects of proteasome inhibitor (PI)‑induced autophagy on PC12 cells overexpressing A53T mutant α‑synuclein (α‑syn) by detecting alterations in the levels of microtubule‑associated protein 1A/1B light chain (LC3)+ autophagosomes and the lysotracker‑positive autolysosomes using immunofluorescence, the expression of LC3‑II using western blot analysis and the morphology of PC12 cells using transmission electron microscopy. It was found that the addition of MG132 (500 nmol/l) significantly increased the number of autophagosomes and autolysosomes and upregulated the expression of LC3‑II. The autophagy inhibitor 3‑methyladenine (3‑MA) completely inhibited the autophagy induced by MG132 (500 nmol/l). The autophagy enhancer trehalose significantly increased the number of autophagosomes and autolysosomes and improved the protein level of LC3‑II induced by MG132. To examine the effect of PI‑induced autophagy on the degradation of A53T mutant α‑syn, the expression of α‑syn was detected by western blot analysis. It was revealed that MG132 increased the expression of A53T α‑syn and trehalose counteracted the increase of A53T α‑syn induced by MG132. Combined inhibition of 3‑MA and PI significantly increased the accumulation of A53T α‑syn as compared with treatment using either single agent. In addition, combination of MG132 (500 nmol/l) with trehalose (50 mmol/l) or 3‑MA (2 mmol/l) markedly decreased the cell viability as compared with treatment using either single agent individually as demonstrated using a 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay. These results suggest that the PI, MG132, could induce autophagy in PC12 cells overexpressing A53T mutant α‑syn and this autophagy could be completely inhibited by 3‑MA, indicating that PI‑induced autophagy is mediated by the upregulation of the macroautophagy class III PI3K pathway. PI‑induced autophagy may act as a compensatory degradation system for degradation of A53T α‑syn when the ubiquitin‑proteasome system is impaired. Autophagy activation may directly contribute to the survival of PC12 cells treated with proteasome inhibitors. The present study may assist in illuminating the association between PI and autophagy in the pathogenesis of Parkinson's disease.

    Topics: Adenine; alpha-Synuclein; Animals; Autophagy; Cell Death; Gene Expression; Leupeptins; Mutation; PC12 Cells; Proteasome Inhibitors; Rats; TOR Serine-Threonine Kinases

2015
TRB3 links insulin/IGF to tumour promotion by interacting with p62 and impeding autophagic/proteasomal degradations.
    Nature communications, 2015, Aug-13, Volume: 6

    High insulin/IGF is a biologic link between diabetes and cancers, but the underlying molecular mechanism remains unclear. Here we report a previously unrecognized tumour-promoting mechanism for stress protein TRB3, which mediates a reciprocal antagonism between autophagic and proteasomal degradation systems and connects insulin/IGF to malignant promotion. We find that several human cancers express higher TRB3 and phosphorylated insulin receptor substrate 1, which correlates negatively with patient's prognosis. TRB3 depletion protects against tumour-promoting actions of insulin/IGF and attenuates tumour initiation, growth and metastasis in mice. TRB3 interacts with autophagic receptor p62 and hinders p62 binding to LC3 and ubiquitinated substrates, which causes p62 deposition and suppresses autophagic/proteasomal degradation. Several tumour-promoting factors accumulate in cancer cells to support tumour metabolism, proliferation, invasion and metastasis. Interrupting TRB3/p62 interaction produces potent antitumour efficacies against tumour growth and metastasis. Our study opens possibility of targeting this interaction as a potential novel strategy against cancers with diabetes.

    Topics: Adaptor Proteins, Signal Transducing; Adenine; Animals; Autophagy; Cell Cycle Proteins; Cell Movement; Gene Expression Regulation, Neoplastic; Humans; Insulin; Insulin Receptor Substrate Proteins; Insulin-Like Growth Factor I; Leupeptins; Male; Mice; Mice, Inbred C57BL; Mice, Nude; Neoplasm Metastasis; Neoplasms, Experimental; Proteasome Endopeptidase Complex; Protein Serine-Threonine Kinases; Repressor Proteins; Sequestosome-1 Protein; Tissue Array Analysis; Ubiquitin

2015
Wild type and mutant amyloid precursor proteins influence downstream effects of proteasome and autophagy inhibition.
    Biochimica et biophysica acta, 2014, Volume: 1842, Issue:2

    Cells rely on complementary proteolytic pathways including the ubiquitin-proteasome system and autophagy to maintain proper protein degradation. There is known to be considerable interplay between them, whereby the loss of one clearance system results in compensatory changes in other proteolytic pathways of the cell. Disturbances in proteolysis are known to occur in Alzheimer's disease, and potentially contribute to neurophysiological and neurodegenerative processes. Currently, few data are available on how the presence of wild type and mutant amyloid precursor protein (APPwt and APPmut) potentially alters the reciprocal interplay between the different intracellular proteolytic pathways. This study used human SH-SY5Y neuronal cell lines, and SH-SY5Y transfected with either APPwt or APPmut (valine-to-glycine substitution at position 717), in order to explore if the presence of APPwt or APPmut altered the downstream effects of pharmacological proteasome or autophagy inhibition. The occurrence of APPwt or APPmut was observed to disturb proteasome or autophagy activities upon treatment with proteasome inhibitors or authophagy inhibitors. Interestingly, APPwt and APPmut expression was observed to significantly and robustly enhance the induction in cathepsin B following the administration of an established proteasome inhibitor. The presence of APPwt and APPmut also significantly reduced the elevation in ubiquitinated proteins following proteasome inhibitor treatments. Our data strongly suggest that APP is able to affect the downstream effects of protease inhibition in neural cells including enhancement of cathepsin B activity, with these changes in cathepsin B significantly and inversely related to the levels of ubiquitinated protein.

    Topics: Adenine; Amino Acid Substitution; Amyloid beta-Protein Precursor; Autophagy; Blotting, Western; Cathepsin B; Cell Line, Tumor; Cell Survival; Cysteine Proteinase Inhibitors; Humans; Immunohistochemistry; Leupeptins; Mutant Proteins; Mutation; Proteasome Endopeptidase Complex; Proteolysis

2014
Clearance of the mutant androgen receptor in motoneuronal models of spinal and bulbar muscular atrophy.
    Neurobiology of aging, 2013, Volume: 34, Issue:11

    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease caused by an abnormal expansion of a tandem CAG repeat in exon 1 of the androgen receptor (AR) gene that results in an abnormally long polyglutamine tract (polyQ) in the AR protein. As a result, the mutant AR (ARpolyQ) misfolds, forming cytoplasmic and nuclear aggregates in the affected neurons. Neurotoxicity only appears to be associated with the formation of nuclear aggregates. Thus, improved ARpolyQ cytoplasmic clearance, which indirectly decreases ARpolyQ nuclear accumulation, has beneficial effects on affected motoneurons. In addition, increased ARpolyQ clearance contributes to maintenance of motoneuron proteostasis and viability, preventing the blockage of the proteasome and autophagy pathways that might play a role in the neuropathy in SBMA. The expression of heat shock protein B8 (HspB8), a member of the small heat shock protein family, is highly induced in surviving motoneurons of patients affected by motoneuron diseases, where it seems to participate in the stress response aimed at cell protection. We report here that HspB8 facilitates the autophagic removal of misfolded aggregating species of ARpolyQ. In addition, though HspB8 does not influence p62 and LC3 (two key autophagic molecules) expression, it does prevent p62 bodies formation, and restores the normal autophagic flux in these cells. Interestingly, trehalose, a well-known autophagy stimulator, induces HspB8 expression, suggesting that HspB8 might act as one of the molecular mediators of the proautophagic activity of trehalose. Collectively, these data support the hypothesis that treatments aimed at restoring a normal autophagic flux that result in the more efficient clearance of mutant ARpolyQ might produce beneficial effects in SBMA patients.

    Topics: Adaptor Proteins, Signal Transducing; Adenine; Animals; Autophagy; Cell Line, Transformed; Cysteine Proteinase Inhibitors; Dose-Response Relationship, Drug; Gene Expression Regulation; Green Fluorescent Proteins; Heat-Shock Proteins; HSP20 Heat-Shock Proteins; Humans; Leupeptins; Mice; Molecular Chaperones; Motor Neurons; Muscle Proteins; Mutation; Receptors, Androgen; RNA, Small Interfering; Sequestosome-1 Protein; Signal Transduction; Testosterone; Trehalose

2013
Degradation of mouse NTE-related esterase by macroautophagy and the proteasome.
    Molecular biology reports, 2012, Volume: 39, Issue:6

    NTE-related esterase (NRE) is a novel endoplasmic reticulum-anchored lysophospholipase with high homology to neuropathy target esterase (NTE). However, little is known about the regulation of NRE protein. In the current study, we investigated the degradation pathways of mouse NRE (mNRE) in mammalian cells. Based on experiments with inhibitors and inducer of protein degradation pathways, we provide here the first evidence that mNRE is degraded by macroautophagy as well as by the proteasome. Moreover, the contribution of protein domains to the degradation of mNRE was investigated, which showed that the transmembrane and regulatory domain played a role in the degradation of mNRE by macroautophagy and the proteasome respectively. In contrast the C-terminal catalytic domain was not involved in both degradation pathways of mNRE. These findings showed for the first time that the degradation pathways in controlling mNRE quantity and may provide further insight into structure and regulation of mNRE.

    Topics: Adenine; Animals; Autophagy; Carboxylic Ester Hydrolases; Cycloheximide; Green Fluorescent Proteins; HEK293 Cells; Humans; Leupeptins; Mice; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Biosynthesis; Protein Structure, Tertiary; Proteolysis; Recombinant Fusion Proteins

2012
Proteasome inhibitor interacts synergistically with autophagy inhibitor to suppress proliferation and induce apoptosis in hepatocellular carcinoma.
    Cancer, 2012, Nov-15, Volume: 118, Issue:22

    The ubiquitin-proteasome system and autophagy-lysosome system are 2 major protein degradation pathways in eukaryotic cells, which are tightly linked to cancer. Proteasome inhibitors have been approved in clinical use against hematologic malignancies, but their application in solid tumors is uncertain. Moreover, the role of autophagy after proteasome inhibition is controversial.. Two proteasome inhibitors, 2 autophagy inhibitors, and 3 hepatocellular carcinoma (HCC) cell lines were investigated in the current study. In vitro, cell proliferation was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell apoptosis was evaluated by flow cytometry analysis of annexin-V/propidium iodide staining, and autophagy was evaluated by green fluorescent protein-light chain 3 (GFP-LC3) redistribution and LC3 Western blot analysis. In vivo, Ki-67 staining was used to detect cell proliferation, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining was used to detect apoptosis, and electron microscopy and p62 immunohistochemical staining were used to detect autophagy.. Proteasome inhibitors suppressed proliferation, induced apoptosis, and activated autophagy in HCC cell lines in vitro, and autophagy exerted a protective role after proteasome inhibition. In vivo, anticancer effects of bortezomib on the MHCC-97H orthotopic model (human HCC cells) were different from the effects observed on the Huh-7 subcutaneous model (human HCC cells). The autophagy inhibitor chloroquine interacted synergistically with bortezomib to suppress proliferation and induce apoptosis in both tumor models.. The current results indicated that simultaneous targeting of the proteasome and autophagy pathways may represent a promising method for HCC treatment.

    Topics: Adenine; Amino Acid Chloromethyl Ketones; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Beclin-1; Boronic Acids; Bortezomib; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Chloroquine; Cysteine Proteinase Inhibitors; Humans; Leupeptins; Membrane Proteins; Microtubule-Associated Proteins; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines

2012
Autophagy is increased in laminin α2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A.
    Human molecular genetics, 2011, Dec-15, Volume: 20, Issue:24

    Congenital muscular dystrophy caused by laminin α2 chain deficiency (also known as MDC1A) is a severe and incapacitating disease, characterized by massive muscle wasting. The ubiquitin-proteasome system plays a major role in muscle wasting and we recently demonstrated that increased proteasomal activity is a feature of MDC1A. The autophagy-lysosome pathway is the other major system involved in degradation of proteins and organelles within the muscle cell. However, it remains to be determined if the autophagy-lysosome pathway is dysregulated in muscular dystrophies, including MDC1A. Using the dy(3K)/dy(3K) mouse model of laminin α2 chain deficiency and MDC1A patient muscle, we show here that expression of autophagy-related genes is upregulated in laminin α2 chain-deficient muscle. Moreover, we found that autophagy inhibition significantly improves the dystrophic dy(3K)/dy(3K) phenotype. In particular, we show that systemic injection of 3-methyladenine (3-MA) reduces muscle fibrosis, atrophy, apoptosis and increases muscle regeneration and muscle mass. Importantly, lifespan and locomotive behavior were also greatly improved. These findings indicate that enhanced autophagic activity is pathogenic and that autophagy inhibition holds a promising therapeutic potential in the treatment of MDC1A.

    Topics: Adenine; Animals; Apoptosis; Autophagy; Behavior, Animal; Disease Models, Animal; Drug Therapy, Combination; Fibrosis; Gene Expression Regulation; Injections; Laminin; Leupeptins; Mice; Motor Activity; Muscles; Muscular Atrophy; Muscular Dystrophies; Peripheral Nervous System Diseases; Phenotype; Phosphorylation; Proto-Oncogene Proteins c-akt; Regeneration; Survival Analysis

2011
Degradation of TDP-43 and its pathogenic form by autophagy and the ubiquitin-proteasome system.
    Neuroscience letters, 2010, Jan-18, Volume: 469, Issue:1

    TAR DNA-binding protein-43 (TDP-43) is a nuclear protein functioning in the regulation of transcription and mRNA splicing. TDP-43 is accumulated in ubiquitinated inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS) diseased brains. However, the pathways involved in the clearance of TDP-43 and its pathogenic form (TDP-25), a truncated form of TDP-43, are still not elucidated. In this study, we demonstrated that the protein levels of TDP-43 and TDP-25 were increased in cells treated with a proteasome inhibitor, MG132, or an autophagy inhibitor, 3-MA, whereas, they were decreased in cells treated with an enhancer of autophagy, trehalose. Furthermore, more protein level changes of TDP-25 than TDP-43 were observed in cells treated with above inhibitors or enhancer. Thus, our data suggest that TDP-43 and TDP-25 are degraded by both proteasome and autophagy with TDP-25 being more regulated.

    Topics: Adenine; Autophagy; Cell Line; DNA-Binding Proteins; Humans; Leupeptins; Pepstatins; Peptide Fragments; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Trehalose; Ubiquitin

2010
A novel sphingosine kinase inhibitor induces autophagy in tumor cells.
    The Journal of pharmacology and experimental therapeutics, 2010, Volume: 333, Issue:2

    The sphingolipids ceramide, sphingosine, and sphingosine 1-phosphate (S1P) regulate cell signaling, proliferation, apoptosis, and autophagy. Sphingosine kinase-1 and -2 (SK1 and SK2) phosphorylate sphingosine to form S1P, shifting the balanced activity of these lipids toward cell proliferation. We have previously reported that pharmacological inhibition of SK activity delays tumor growth in vivo. The present studies demonstrate that the SK2-selective inhibitor 3-(4-chlorophenyl)-adamantane-1-carboxylic acid (pyridin-4-ylmethyl)amide (ABC294640) induces nonapoptotic cell death that is preceded by microtubule-associated protein light chain 3 cleavage, morphological changes in lysosomes, formation of autophagosomes, and increases in acidic vesicles in A-498 kidney carcinoma cells. ABC294640 caused similar autophagic responses in PC-3 prostate and MDA-MB-231 breast adenocarcinoma cells. Simultaneous exposure of A-498 cells to ABC294640 and 3-methyladenine, an inhibitor of autophagy, switched the mechanism of toxicity to apoptosis, but decreased the potency of the SK2 inhibitor, indicating that autophagy is a major mechanism for tumor cell killing by this compound. Induction of the unfolded protein response by the proteasome inhibitor N-(benzyloxycarbonyl)leucinylleucinylleucinal Z-Leu-Leu-Leu-al (MG-132) or the heat shock protein 90 inhibitor geldanamycin synergistically increased the cytotoxicity of ABC294640 in vitro. In severe combined immunodeficient mice bearing A-498 xenografts, daily administration of ABC294640 delayed tumor growth and elevated autophagy markers, but did not increase terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling-positive cells in the tumors. These data suggest that ABC294640 promotes tumor cell autophagy, which ultimately results in nonapoptotic cell death and a delay of tumor growth in vivo. Consequently, ABC294640 may effectively complement anticancer drugs that induce tumor cell apoptosis.

    Topics: Adamantane; Adenine; Animals; Apoptosis; Autophagy; Blotting, Western; Cell Cycle; Electrophoresis, Polyacrylamide Gel; Humans; Leupeptins; Mice; Mice, SCID; Microscopy, Confocal; Microtubule-Associated Proteins; Mitochondrial Membranes; Neoplasm Transplantation; Neoplasms, Experimental; Phosphotransferases (Alcohol Group Acceptor); Polymerase Chain Reaction; Pyridines; RNA, Small Interfering; Tumor Cells, Cultured; Unfolded Protein Response

2010
Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells.
    Biochemical and biophysical research communications, 2008, Sep-19, Volume: 374, Issue:2

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G(2)/M cell cycle arrest which was associated with the formation of LC3(+) autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3(+) autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.

    Topics: Adenine; Autophagy; Cell Division; Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; Cysteine Proteinase Inhibitors; Cytoplasmic Vesicles; G2 Phase; Humans; Leupeptins; Microtubule-Associated Proteins; Proteasome Inhibitors; Vacuoles

2008
Characterization of the physiological turnover of native and inactivated cytochromes P450 3A in cultured rat hepatocytes: a role for the cytosolic AAA ATPase p97?
    Biochemistry, 2007, Jul-03, Volume: 46, Issue:26

    Mammalian hepatic cytochromes P450 (P450s) are endoplasmic reticulum (ER)-anchored hemoproteins engaged in the metabolism of numerous xeno- and endobiotics. P450s exhibit widely ranging half-lives, utilizing both autophagic-lysosomal (ALD) and ubiquitin-dependent 26S proteasomal (UPD) degradation pathways. Although suicidally inactivated hepatic CYPs 3A and "native" CYP3A4 in Saccharomyces cerevisiae are degraded via UPD, the turnover of native hepatic CYPs 3A in their physiological milieu has not been elucidated. Herein, we characterize the degradation of native, dexamethasone-inducible CYPs 3A in cultured primary rat hepatocytes, using proteasomal (MG-132 and MG-262) and ALD [NH4Cl and 3-methyladenine (3-MA)] inhibitors to examine their specific degradation route. Pulse-chase with immunoprecipitation analyses revealed a basal 52% 35S-CYP3A loss over 6 h, which was stabilized by both proteasomal inhibitors. By contrast, no corresponding CYP3A stabilization was detected with either ALD inhibitor NH4Cl or 3-MA. Furthermore, MG-262-induced CYP3A stabilization was associated with its polyubiquitylation, thereby verifying that native CYPs 3A were also degraded via UPD. To identify the specific participants in this process, cellular proteins were cross-linked in situ with paraformaldehyde (PFA) in cultured hepatocytes. Immunoblotting analyses of CYP3A immunoprecipitates after PFA-cross-linking revealed the presence of p97, a cytosolic AAA ATPase instrumental in the extraction and delivery of ubiquitylated ER proteins for proteasomal degradation. Such native CYP3A-p97 interactions were greatly magnified after CYP3A suicidal inactivation (which accelerates UPD), and/or proteasomal inhibition, and were confirmed by proteomic and confocal immunofluorescence microscopic analyses. These findings clearly reveal that native CYPs 3A undergo UPD and implicate a role for p97 in this process.

    Topics: Adenine; Adenosine Triphosphatases; Ammonium Chloride; Animals; Autophagy; Boronic Acids; Cell Cycle Proteins; Cross-Linking Reagents; Cytochrome P-450 CYP3A; Cytochrome P-450 CYP3A Inhibitors; Dexamethasone; Dicarbethoxydihydrocollidine; Formaldehyde; Hepatocytes; Leupeptins; Lysosomes; Male; Nuclear Proteins; Polymers; Proteasome Endopeptidase Complex; Rats; Rats, Sprague-Dawley; Saccharomyces cerevisiae Proteins; Troleandomycin; Ubiquitin; Valosin Containing Protein

2007
Akt and Mammalian target of rapamycin regulate separate systems of proteolysis in renal tubular cells.
    Journal of the American Society of Nephrology : JASN, 2006, Volume: 17, Issue:9

    EGF suppresses proteolysis via class 1 phosphatidylinositol 3-kinase (PI3K) in renal tubular cells. EGF also increases the abundance of glycolytic enzymes (e.g., glyceraldehyde-3-phosphate dehydrogenase [GAPDH]) and transcription factors (e.g., pax2) that are degraded by the lysosomal pathway of chaperone-mediated autophagy. To determine if EGF regulates chaperone-mediated autophagy through PI3K signaling, this study examined the effect of inhibiting PI3K and its downstream mediators Akt and the mammalian target of rapamycin (mTOR). Inhibition of PI3K with LY294002 prevented EGF-induced increases in GAPDH and pax2 abundance in NRK-52E renal tubular cells. Similar results were seen with an adenovirus encoding a dominant negative Akt (DN Akt). Expression of a constitutively active Akt increased GAPDH and pax2 abundance. An mTOR inhibitor, rapamycin, did not prevent EGF-induced increases in these proteins. Neither DN Akt nor rapamycin alone had an effect on total cell protein degradation, but both partially reversed EGF-induced suppression of proteolysis. DN Akt no longer affected proteolysis after treatment with a lysosomal inhibitor, methylamine. In contrast, methylamine or the inhibitor of macroautophagy, 3-methyladenine, did not prevent rapamycin from partially reversing the effect of EGF on proteolysis. Notably, rapamycin did not increase autophagasomes detected by monodansylcadaverine staining. Blocking the proteasomal pathway with either MG132 or lactacystin prevented rapamycin from partially reversing the effect of EGF on proteolysis. It is concluded that EGF regulates pax2 and GAPDH abundance and proteolysis through a PI3K/Akt-sensitive pathway that does not involve mTOR. Rapamycin has a novel effect of regulating proteasomal proteolysis in cells that are stimulated with EGF.

    Topics: Acetylcysteine; Adenine; Animals; Autophagy; Cell Line; Chromones; Epidermal Growth Factor; Glyceraldehyde-3-Phosphate Dehydrogenases; Kidney Tubules; Leupeptins; Lysosomes; Methylamines; Morpholines; PAX2 Transcription Factor; Peptide Hydrolases; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proteasome Endopeptidase Complex; Protein Kinases; Proto-Oncogene Proteins c-akt; Rats; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases

2006
Liver alcohol dehydrogenase is degraded by the ubiquitin-proteasome pathway.
    Biochemical and biophysical research communications, 2001, Jul-20, Volume: 285, Issue:3

    Dihydrotestosterone (DHT) decreases rat liver alcohol dehydrogenase (ADH) due principally to an increased rate of degradation of the enzyme. The pathway of degradation of ADH was investigated. Exposure of hepatocytes in culture to lactacystin or to MG132, which are inhibitors of the ubiquitin-proteasome pathway of protein degradation, resulted in higher ADH. Furthermore, both lactacystin and MG132 prevented the decrease in ADH caused by DHT. By contrast, the lysosomal proteolytic inhibitors 3-methyladenine and leupeptin as well as inhibitors of the calcium-activated neutral protease calpain system had no effect on ADH in the absence or presence of DHT. ADH isolated by immunoprecipitation from hepatocytes exposed to DHT reacted specifically with anti-ubiquitin antibody. Ubiquitinated ADH was also demonstrated in hepatocytes exposed to MG132. The combination of DHT and MG132 resulted in more ubiquitinated ADH than exposure to either compound alone. These results suggest that the ubiquitin-proteasome pathway plays a role in the degradation of ADH and in the enhanced degradation of this enzyme by DHT.

    Topics: Acetylcysteine; Adenine; Alcohol Dehydrogenase; Animals; Calpain; Cells, Cultured; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Dihydrotestosterone; Electrophoresis, Polyacrylamide Gel; Hepatocytes; Leupeptins; Liver; Lysosomes; Male; Multienzyme Complexes; Precipitin Tests; Proteasome Endopeptidase Complex; Rats; Rats, Sprague-Dawley; Ubiquitins

2001