Page last updated: 2024-08-23

benzonidazole and amphotericin b

benzonidazole has been researched along with amphotericin b in 48 studies

Research

Studies (48)

TimeframeStudies, this research(%)All Research%
pre-19901 (2.08)18.7374
1990's0 (0.00)18.2507
2000's4 (8.33)29.6817
2010's38 (79.17)24.3611
2020's5 (10.42)2.80

Authors

AuthorsStudies
Berecibar, A; Davioud-Charvet, E; Debreu, MA; Girault, S; Grellier, P; Lemière, P; Maes, L; Mouray, E; Sergheraert, C1
da Silva, DG; da Silva, LE; Joussef, AC; Pacheco, LK; Rebelo, RA; Schmidt, B; Steindel, M1
del Olmo, E; Giménez, A; López-Pérez, JL; Rebollo, O; Ruiz, G; San Feliciano, A1
García-Mera, X; González-Díaz, H; Prado-Prado, FJ1
Aponte, JC; Arevalo, J; Bustamante, JM; Castillo, D; Estevez, Y; Franzblau, SG; Gilman, RH; Gonzalez, G; Hammond, GB; Málaga, E; Pauli, GF; Quiliano, M; Sauvain, M; Tarleton, RL; Vaisberg, AJ; Verástegui, M; Wang, Y; Zimic, M1
Baumann, K; Bischof, SK; Bringmann, G; Brun, R; Dreher, J; Gulder, T; Kaiser, M; Moll, H; Müller, S; Stich, A; Winter, C1
Alves, RJ; Borgati, TF; de Oliveira, RB; de Souza Pietra, RC; Fernandes, AP; Júnior, PA; Lopes, MS; Romanha, AJ; Romeiro, CF; Souza-Fagundes, EM1
Izumi, E; Nakamura, CV; Pinto, AC; Ueda-Nakamura, T; Veiga, VF1
Costa, SP; da Rocha, LF; de Melo, CM; de Oliveira Filho, GB; de Simone, CA; Ferreira, RS; Fradico, JR; Guimarães, ET; Hernandes, MZ; Leite, AC; Meira, CS; Moreira, DR; Pereira, VR; Rabello, MM; Soares, MB; Srivastava, RM1
Gehrke, SS; Hider, RC; Pinto, EG; Pleban, K; Steverding, D; Tempone, AG; Wagner, GK1
Chattopadhyaya, J; Dixit, SS; Földesi, A; Upadhayaya, RS1
Arafa, RK; Boykin, DW; Brun, R; Ismail, MA; Jones, SK; Pandharkar, T; Patrick, DA; Tidwell, RR; Wenzler, T; Werbovetz, KA; Zhu, X1
Alves, ÉV; Braga, SF; Coelho, EF; de Oliveira, RB; Duarte, MC; Ferreira, RS; Fradico, JR; Júnior, PA; Lage, PS; Ribeiro, TG; Romanha, AJ; Steindel, M; Tonini, ML1
de Assis, FF; de Oliveira, KT; Fill, TP; Garcia, FP; Kaplum, V; Lazarin-Bidóia, D; Nakamura, CV; Rodrigues-Filho, E; Ud Din, Z1
Álvarez, G; Arias Rivas, CE; Cerecetto, H; Chorilli, M; Cuchilla, K; Echeverría, GA; Escobar, P; Gabay, M; González, M; Leal, SM; Márquez, P; Piro, OE; Serna, E; Torres, S; Varela, J; Vera de Bilbao, NI; Yaluff, G1
Boykin, DW; Brun, R; Liu, ZY; Wenzler, T; Zhu, X1
Freitas-Junior, LH; Goo, J; Han, D; Kim, S; Kong, S; Lee, N; Oh, S; Siqueira-Neto, JL; Song, R; Yang, G1
Cogo, J; Corrêa, AG; Kaplum, V; Nakamura, CV; Sangi, DP; Ueda-Nakamura, T1
Abonia, R; Becerra, D; Cobo, J; Echeverry, C; Insuasty, B; Muñoz, JA; Nogueras, M; Ospina, V; Quiroga, J; Ramírez, J; Robledo, SM; Upegui, Y; Vélez, ID1
Bolzani, Vda S; de Almeida, L; dos Santos, MB; Dutra, LA; Graminha, MA; Michels, PA; Passalacqua, TG; Regasini, LO; Torres, FA; Velásquez, AM; Yamasaki, PR1
Amata, E; Devine, W; Erath, J; Lee, PJ; Leed, SE; Mensa-Wilmot, K; Patel, G; Pollastri, MP; Rodriguez, A; Roncal, NE; Sciotti, RJ; Swaminathan, U; Woodring, JL1
Carda, M; Cardona, W; Castrillón, W; Coa, JC; Muñoz, JA; Ospina, V; Robledo, SM; Vélez, ID1
Bosc, D; Cojean, S; Dubois, J; Franco, CH; Freitas-Junior, LH; Grellier, P; Loiseau, PM; Moraes, CB; Mouray, E1
Alakurtti, S; Brun, R; Jaffe, CL; Kaiser, M; Kopelyanskiy, D; Moreira, VM; Nasereddin, A; Oksman-Caldentey, KM; Pirttimaa, M; Yli-Kauhaluoma, J1
de Moraes, MH; Kamdoum, BC; Kuete, V; Ngadjui, BT; Sandjo, LP; Steindel, M1
Bernardes, LSC; da Rosa, R; de Moraes, MH; Schenkel, EP; Steindel, M; Zimmermann, LA1
Jäger, SN; Labadie, GR; Lepesheva, GI; Nocito, I; Porta, EOJ; Serra, EC; Tekwani, BL1
Agut, R; Carda, M; Cardona, WI; García, E; Otero, E; Palacios, G; Robledo, SM; Vélez, ID; Yepes, LM1
Alcantara, LM; Cordeiro-da-Silva, A; Costantino, L; Costi, MP; Ellinger, B; Ferrari, S; Franco, CH; Freitas-Junior, LH; Gul, S; Kuzikov, M; Linciano, P; Luciani, R; Macedo, S; Moraes, CB; Pascoalino, B; Quotadamo, A; Santarem, N; Witt, G1
Din, ZU; Garcia, FP; Lazarin-Bidóia, D; Nakamura, CV; Peron, F; Rodrigues-Filho, E; Rodríguez, IC; Soman de Medeiros, L; Trapp, MA; Wadood, A1
Cantizani, J; Cogo, J; Corrêa, AG; Cotillo, I; Filho, BPD; Martín, JJ; Nakamura, CV; Sangi, DP; Ueda-Nakamura, T1
Bernardes, LSC; da Rosa, R; de Melo, EB; de Moraes, MH; Paula, FR; Schenkel, EP; Steindel, M; Zimmermann, LA1
Bernardes, LSC; da Rosa, R; de Moraes, MH; Schappo, AD; Schenkel, EP; Schneider, NFZ; Simões, CMO; Steindel, M; Zimmermann, LA1
Amata, E; Behera, R; Erath, J; Guyett, P; Leed, SE; Mensa-Wilmot, K; Patel, G; Penn, E; Pollastri, MP; Rodriguez, A; Roncal, N; Sciotti, RJ; Sharma, A; Singh, B; Wiedeman, J; Woodring, JL1
Azas, N; Basmaciyan, L; Belle Mbou, V; Boudot, C; Bourgeade-Delmas, S; Boutet-Robinet, É; Casanova, M; Castera-Ducros, C; Cohen, A; Courtioux, B; Fairlamb, AH; Fersing, C; Hutter, S; Laget, M; Milne, R; Pedron, J; Piednoel, M; Primas, N; Rathelot, P; Since, M; Sournia-Saquet, A; Valentin, A; Vanelle, P; Verhaeghe, P; Wyllie, S1
Baptista, C; Bonucci, A; Cordeiro-da-Silva, A; Costantino, L; Costi, MP; di Pisa, F; Ellinger, B; Ferrari, S; Franco, C; Gul, S; Iacono, LD; Kuzikov, M; Landi, G; Linciano, P; Luciani, R; Mangani, S; Moraes, CB; Müller, W; Pöhner, I; Pozzi, C; Quotadamo, A; Santarem, N; Sesenna, A; Witt, G; Wittig, U1
Awori, RM; Bode, HB; Groß, J; Kaiser, M; Opatz, T; Zhao, L1
Azas, N; Cohen, A; Crozet, MD; Docampo, R; Kabri, Y; Mathias, F; Negrão, NW; Vanelle, P1
Azas, N; Boudot, C; Bourgeade-Delmas, S; Boutet-Robinet, É; Brossas, JY; Castera-Ducros, C; Corvaisier, S; Courtioux, B; Destere, A; Fairlamb, AH; Fersing, C; Hutter, S; Malzert-Fréon, A; Mazier, D; Paoli-Lombardo, R; Paris, L; Pedron, J; Pinault, E; Primas, N; Rathelot, P; Seguy, L; Since, M; Sournia-Saquet, A; Stigliani, JL; Valentin, A; Vanelle, P; Verhaeghe, P; Wyllie, S1
La-Venia, A; Labadie, GR; Medrán, NS; Pereira, CA; Sayé, M; Tekwani, BL1
Bastos, TM; Borges, JN; da Rocha, CQ; de Sousa, KAF; Grimaldi, GB; Marcourt, L; Morin, H; Neuenschwander, A; Queiroz, EF; Rivara-Minten, E; Rocha, VPC; Soares, MBP; Wolfender, JL1
Carey, SM; D'Antonio, EL; Gracz, H; Green, SB; Lanier, RJ; Morgan, DR; Rodriguez, A; Sherman, J1
Abitbol, H1
Assreuy, J; Calixto, JB; Corrêa, R; Eger-Mangrich, I; Grisard, EC; Guzela, M; Lunardi, F; Rodrigues, AT; Santos, AR; Steindel, M1
Dias Filho, BP; Kaneshima, EN; Nakamura, CV; Sarragiotto, MH; Silva, SO; Tonin, LT; Ueda-Nakamura, T; Valdez, RH; Yamada-Ogatta, SF; Yamauchi, LM1
Carlier, Y; Cencig, S; Coltel, N; Truyens, C1
Barrett, MP; Croft, SL1
Bandyopadhyay, D; Banik, BK; Nogueda-Torres, B; Rivera, G; Samano, S; Sanchez-Torres, LE; Villalobos-Rocha, JC1

Reviews

1 review(s) available for benzonidazole and amphotericin b

ArticleYear
Management of trypanosomiasis and leishmaniasis.
    British medical bulletin, 2012, Volume: 104

    Topics: Administration, Oral; Africa; Amphotericin B; Antiprotozoal Agents; Benzamides; Boron Compounds; Chagas Disease; Drug Therapy, Combination; Humans; India; Leishmaniasis; Nitroimidazoles; Pentamidine; Triazoles; Trypanosomiasis, African

2012

Other Studies

47 other study(ies) available for benzonidazole and amphotericin b

ArticleYear
Antimalarial, antitrypanosomal, and antileishmanial activities and cytotoxicity of bis(9-amino-6-chloro-2-methoxyacridines): influence of the linker.
    Journal of medicinal chemistry, 2000, Jul-13, Volume: 43, Issue:14

    Topics: Acridines; Animals; Antimalarials; Cell Line; Leishmania infantum; Plasmodium falciparum; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma brucei brucei; Trypanosoma cruzi

2000
Synthesis and in vitro evaluation of leishmanicidal and trypanocidal activities of N-quinolin-8-yl-arylsulfonamides.
    Bioorganic & medicinal chemistry, 2007, Dec-15, Volume: 15, Issue:24

    Topics: Animals; Antiprotozoal Agents; Copper; Inhibitory Concentration 50; Leishmania; Molecular Structure; Organometallic Compounds; Parasitic Sensitivity Tests; Quinolines; Sulfonamides; Trypanocidal Agents; Trypanosoma cruzi; Zinc

2007
Leishmanicidal and trypanocidal activities of 2-aminocyclohexanol and 1,2-cyclohexanediamine derivatives.
    Bioorganic & medicinal chemistry letters, 2008, Jan-01, Volume: 18, Issue:1

    Topics: Animals; Cyclohexanes; Cyclohexanols; Diamines; Inhibitory Concentration 50; Leishmania; Sphingosine; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma cruzi

2008
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
    Bioorganic & medicinal chemistry, 2010, Mar-15, Volume: 18, Issue:6

    Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics

2010
Trypanoside, anti-tuberculosis, leishmanicidal, and cytotoxic activities of tetrahydrobenzothienopyrimidines.
    Bioorganic & medicinal chemistry, 2010, Apr-15, Volume: 18, Issue:8

    Topics: Antiprotozoal Agents; Antitubercular Agents; Cell Line, Tumor; Humans; Mycobacterium tuberculosis; Parasitic Sensitivity Tests; Pyrimidines; Trypanosoma cruzi

2010
QSAR guided synthesis of simplified antiplasmodial analogs of naphthylisoquinoline alkaloids.
    European journal of medicinal chemistry, 2010, Volume: 45, Issue:11

    Topics: Alkaloids; Animals; Antimalarials; Isoquinolines; Magnetic Resonance Spectroscopy; Models, Molecular; Plasmodium falciparum; Quantitative Structure-Activity Relationship; Spectrometry, Mass, Electrospray Ionization; Spectroscopy, Fourier Transform Infrared

2010
Synthesis and evaluation of the anti parasitic activity of aromatic nitro compounds.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:11

    Topics: Antiparasitic Agents; Cell Survival; Chemistry Techniques, Synthetic; Humans; Inhibitory Concentration 50; Leishmania; Lymphocytes; Nitro Compounds; Trypanosoma cruzi

2011
Terpenes from Copaifera demonstrated in vitro antiparasitic and synergic activity.
    Journal of medicinal chemistry, 2012, Apr-12, Volume: 55, Issue:7

    Topics: Animals; Cell Line; Cell Membrane; Diterpenes; Drug Synergism; Erythrocytes; Fabaceae; Life Cycle Stages; Lipid Peroxidation; Mitochondria; Oxidative Stress; Parasitic Sensitivity Tests; Sesquiterpenes; Structure-Activity Relationship; Terpenes; Trypanocidal Agents; Trypanosoma cruzi

2012
Structural investigation of anti-Trypanosoma cruzi 2-iminothiazolidin-4-ones allows the identification of agents with efficacy in infected mice.
    Journal of medicinal chemistry, 2012, Dec-27, Volume: 55, Issue:24

    Topics: Animals; Cell Proliferation; Chagas Disease; Computer Simulation; Cysteine Endopeptidases; Female; Imines; Mice; Mice, Inbred BALB C; Models, Molecular; Protein Binding; Protozoan Proteins; Spleen; Stereoisomerism; Structure-Activity Relationship; Thiazolidines; Trypanocidal Agents; Trypanosoma cruzi

2012
Conjugation to 4-aminoquinoline improves the anti-trypanosomal activity of Deferiprone-type iron chelators.
    Bioorganic & medicinal chemistry, 2013, Feb-01, Volume: 21, Issue:3

    Topics: Aminoquinolines; Antiprotozoal Agents; Deferiprone; Dose-Response Relationship, Drug; Iron Chelating Agents; Leishmania infantum; Molecular Structure; Parasitic Sensitivity Tests; Plasmodium falciparum; Pyridones; Structure-Activity Relationship; Trypanosoma brucei brucei; Trypanosoma cruzi

2013
New antiprotozoal agents: their synthesis and biological evaluations.
    Bioorganic & medicinal chemistry letters, 2013, May-01, Volume: 23, Issue:9

    Topics: Amphotericin B; Antiprotozoal Agents; Cell Line; Cell Survival; Humans; Leishmania infantum; Nifurtimox; Nitroimidazoles; Parasitic Sensitivity Tests; Quinolines; Structure-Activity Relationship; Trypanosoma brucei brucei; Trypanosoma brucei rhodesiense; Trypanosoma cruzi

2013
Synthesis and antiprotozoal activity of dicationic m-terphenyl and 1,3-dipyridylbenzene derivatives.
    Journal of medicinal chemistry, 2013, Jul-11, Volume: 56, Issue:13

    Topics: Animals; Antiprotozoal Agents; Benzene; Chagas Disease; Female; Leishmania donovani; Mice; Mice, Inbred Strains; Models, Chemical; Molecular Structure; Parasitic Sensitivity Tests; Plasmodium falciparum; Pyridines; Structure-Activity Relationship; Terphenyl Compounds; Trypanosoma cruzi

2013
Synthesis and evaluation of the antiparasitic activity of bis-(arylmethylidene) cycloalkanones.
    European journal of medicinal chemistry, 2014, Volume: 71

    Topics: Animals; Antiprotozoal Agents; Cell Line; Chagas Disease; Fibroblasts; Humans; Leishmania mexicana; Leishmaniasis, Cutaneous; Macrophages; Mice; Models, Molecular; Trypanosoma cruzi

2014
Unsymmetrical 1,5-diaryl-3-oxo-1,4-pentadienyls and their evaluation as antiparasitic agents.
    Bioorganic & medicinal chemistry, 2014, Feb-01, Volume: 22, Issue:3

    Topics: Animals; Antiparasitic Agents; Benzaldehydes; Cells, Cultured; Chemistry Techniques, Synthetic; Drug Evaluation, Preclinical; Ketones; Leishmania; Macrophages; Mice; Molecular Structure; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma cruzi

2014
Optimization of antitrypanosomatid agents: identification of nonmutagenic drug candidates with in vivo activity.
    Journal of medicinal chemistry, 2014, May-22, Volume: 57, Issue:10

    Topics: Animals; Drug Stability; Female; Mice; Mice, Inbred BALB C; Mutation; Trypanocidal Agents; Trypanosoma cruzi

2014
Synthesis and antiparasitic activity of new bis-arylimidamides: DB766 analogs modified in the terminal groups.
    European journal of medicinal chemistry, 2014, Aug-18, Volume: 83

    Topics: Amides; Animals; Antiparasitic Agents; Cell Line; Chemistry Techniques, Synthetic; Leishmania; Plasmodium falciparum; Rats; Trypanosoma

2014
Synthesis and biological evaluation of 2,3-dihydroimidazo[1,2-a]benzimidazole derivatives against Leishmania donovani and Trypanosoma cruzi.
    European journal of medicinal chemistry, 2014, Sep-12, Volume: 84

    Topics: Antiparasitic Agents; Benzimidazoles; Cells, Cultured; Dose-Response Relationship, Drug; Heterocyclic Compounds, 3-Ring; Humans; Leishmania donovani; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanosoma cruzi

2014
Synthesis and biological evaluation of novel 2,3-disubstituted quinoxaline derivatives as antileishmanial and antitrypanosomal agents.
    European journal of medicinal chemistry, 2015, Jan-27, Volume: 90

    Topics: Antiprotozoal Agents; Dose-Response Relationship, Drug; Leishmania; Molecular Structure; Parasitic Sensitivity Tests; Quinoxalines; Structure-Activity Relationship; Trypanosoma cruzi

2015
An efficient synthesis of new caffeine-based chalcones, pyrazolines and pyrazolo[3,4-b][1,4]diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents.
    European journal of medicinal chemistry, 2015, Mar-26, Volume: 93

    Topics: Antimalarials; Azepines; Caffeine; Chalcones; Chemistry Techniques, Synthetic; Humans; Inhibitory Concentration 50; Leishmania; Plasmodium falciparum; Pyrazoles; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma cruzi; U937 Cells

2015
Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds.
    Bioorganic & medicinal chemistry letters, 2015, Aug-15, Volume: 25, Issue:16

    Topics: Chalcone; Inhibitory Concentration 50; Leishmania infantum; Prenylation; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma cruzi

2015
Protozoan Parasite Growth Inhibitors Discovered by Cross-Screening Yield Potent Scaffolds for Lead Discovery.
    Journal of medicinal chemistry, 2015, Jul-23, Volume: 58, Issue:14

    Topics: Animals; Antiprotozoal Agents; Drug Discovery; Drug Evaluation, Preclinical; Growth Inhibitors; Hep G2 Cells; Humans; Parasites; Quinazolines

2015
Synthesis, leishmanicidal, trypanocidal and cytotoxic activity of quinoline-hydrazone hybrids.
    European journal of medicinal chemistry, 2015, Aug-28, Volume: 101

    Topics: Antiprotozoal Agents; Cell Line; Dose-Response Relationship, Drug; Humans; Hydrazones; Leishmania guyanensis; Macrophages; Molecular Structure; Parasitic Sensitivity Tests; Quinolines; Structure-Activity Relationship; Trypanosoma cruzi

2015
Highly improved antiparasitic activity after introduction of an N-benzylimidazole moiety on protein farnesyltransferase inhibitors.
    European journal of medicinal chemistry, 2016, Feb-15, Volume: 109

    Topics: Alkyl and Aryl Transferases; Animals; Antiparasitic Agents; Cell Line; Enzyme Inhibitors; Humans; Imidazoles; Leishmania donovani; Leishmaniasis, Visceral; Malaria, Falciparum; Mice; Parasitic Sensitivity Tests; Plasmodium falciparum; Trypanosoma; Trypanosoma brucei brucei; Trypanosoma cruzi; Trypanosomiasis

2016
Abietane-Type Diterpenoid Amides with Highly Potent and Selective Activity against Leishmania donovani and Trypanosoma cruzi.
    Journal of natural products, 2016, Feb-26, Volume: 79, Issue:2

    Topics: Abietanes; Amides; Chagas Disease; Humans; Inhibitory Concentration 50; Leishmania donovani; Leishmaniasis; Macrophages; Molecular Structure; Nitroimidazoles; Parasitic Sensitivity Tests; Trypanocidal Agents; Trypanosoma cruzi

2016
Individual and combined antiparasitic effect of six plant metabolites against Leishmania amazonensis and Trypanosoma cruzi.
    Bioorganic & medicinal chemistry letters, 2016, Apr-01, Volume: 26, Issue:7

    Topics: Alkaloids; Anthraquinones; Antiparasitic Agents; Antiprotozoal Agents; Chagas Disease; Chalcones; Flavanones; Humans; Leishmania mexicana; Leishmaniasis, Cutaneous; Moraceae; Plant Extracts; Plants; Rubiaceae; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma cruzi; Zanthoxylum

2016
Design and synthesis of a new series of 3,5-disubstituted isoxazoles active against Trypanosoma cruzi and Leishmania amazonensis.
    European journal of medicinal chemistry, 2017, Mar-10, Volume: 128

    Topics: Animals; Antiprotozoal Agents; Drug Design; Furans; Isoxazoles; Leishmania infantum; Leishmania mexicana; Leishmaniasis; Lignans; Molecular Structure; NADH, NADPH Oxidoreductases; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanosoma cruzi

2017
Antitrypanosomal and antileishmanial activity of prenyl-1,2,3-triazoles.
    MedChemComm, 2017, May-01, Volume: 8, Issue:5

    Topics:

2017
Triclosan-caffeic acid hybrids: Synthesis, leishmanicidal, trypanocidal and cytotoxic activities.
    European journal of medicinal chemistry, 2017, Dec-01, Volume: 141

    Topics: Antiprotozoal Agents; Caffeic Acids; Cell Line; Cell Survival; Dose-Response Relationship, Drug; Humans; Leishmania; Macrophages; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Triclosan; Trypanosoma cruzi

2017
Aryl thiosemicarbazones for the treatment of trypanosomatidic infections.
    European journal of medicinal chemistry, 2018, Feb-25, Volume: 146

    Topics: Antiprotozoal Agents; Chagas Disease; Dose-Response Relationship, Drug; Humans; Macrophages; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Thiosemicarbazones; Trypanosoma

2018
Symmetrical and unsymmetrical substituted 2,5-diarylidene cyclohexanones as anti-parasitic compounds.
    European journal of medicinal chemistry, 2018, Jul-15, Volume: 155

    Topics: Animals; Antiparasitic Agents; Cell Line; Cell Survival; Cyclohexanones; Dose-Response Relationship, Drug; Leishmania; Macaca mulatta; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanosoma cruzi

2018
Quinoxaline derivatives as potential antitrypanosomal and antileishmanial agents.
    Bioorganic & medicinal chemistry, 2018, 08-07, Volume: 26, Issue:14

    Topics: Antiprotozoal Agents; Dose-Response Relationship, Drug; Leishmania donovani; Molecular Structure; Parasitic Sensitivity Tests; Quinoxalines; Structure-Activity Relationship; Trypanosoma brucei brucei; Trypanosoma cruzi

2018
Synthesis and SAR of new isoxazole-triazole bis-heterocyclic compounds as analogues of natural lignans with antiparasitic activity.
    Bioorganic & medicinal chemistry, 2018, 09-15, Volume: 26, Issue:17

    Topics: Antiprotozoal Agents; Carbon-13 Magnetic Resonance Spectroscopy; Drug Evaluation, Preclinical; Heterocyclic Compounds; Humans; Isoxazoles; Leishmania; Lignans; NADH, NADPH Oxidoreductases; Proton Magnetic Resonance Spectroscopy; Spectrophotometry, Infrared; Structure-Activity Relationship; THP-1 Cells; Triazoles; Trypanosoma cruzi

2018
Synthesis and biological evaluation of isoxazolyl-sulfonamides: A non-cytotoxic scaffold active against Trypanosoma cruzi, Leishmania amazonensis and Herpes Simplex Virus.
    Bioorganic & medicinal chemistry letters, 2018, 11-01, Volume: 28, Issue:20

    Topics: Animals; Antiviral Agents; Cell Line, Tumor; Cell Survival; Chlorocebus aethiops; Humans; Isoxazoles; Leishmania; Molecular Structure; Simplexvirus; Structure-Activity Relationship; Sulfonamides; Trypanocidal Agents; Trypanosoma cruzi; Vero Cells

2018
Series of Alkynyl-Substituted Thienopyrimidines as Inhibitors of Protozoan Parasite Proliferation.
    ACS medicinal chemistry letters, 2018, Oct-11, Volume: 9, Issue:10

    Topics:

2018
Nongenotoxic 3-Nitroimidazo[1,2-
    ACS medicinal chemistry letters, 2019, Jan-10, Volume: 10, Issue:1

    Topics:

2019
Enhancement of Benzothiazoles as Pteridine Reductase-1 Inhibitors for the Treatment of Trypanosomatidic Infections.
    Journal of medicinal chemistry, 2019, 04-25, Volume: 62, Issue:8

    Topics: Animals; Antiprotozoal Agents; Benzothiazoles; Binding Sites; Catalytic Domain; Crystallography, X-Ray; Drug Design; Enzyme Inhibitors; Half-Life; Leishmania major; Mice; Mice, Inbred BALB C; Molecular Docking Simulation; Oxidoreductases; Protozoan Proteins; Structure-Activity Relationship; Trypanosoma brucei brucei; Trypanosomiasis

2019
Structure, Biosynthesis, and Bioactivity of Photoditritide from
    Journal of natural products, 2019, 12-27, Volume: 82, Issue:12

    Topics: Anti-Bacterial Agents; Antiprotozoal Agents; Microbial Sensitivity Tests; Micrococcus luteus; Molecular Structure; Photorhabdus; Spectrum Analysis; Trypanosoma brucei rhodesiense

2019
Synthesis and in vitro evaluation of new 5-substituted 6-nitroimidazooxazoles as antikinetoplastid agents.
    European journal of medicinal chemistry, 2020, Apr-01, Volume: 191

    Topics: Antiprotozoal Agents; Dose-Response Relationship, Drug; Leishmania donovani; Molecular Structure; Nitroimidazoles; Oxazoles; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanosoma cruzi

2020
8-Alkynyl-3-nitroimidazopyridines display potent antitrypanosomal activity against both T. b. brucei and cruzi.
    European journal of medicinal chemistry, 2020, Sep-15, Volume: 202

    Topics: Dose-Response Relationship, Drug; Molecular Structure; Nitroimidazoles; Parasitic Sensitivity Tests; Pyridines; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma brucei brucei; Trypanosoma cruzi

2020
Expanding the scope of synthetic 1,2,4-trioxanes towards Trypanosoma cruzi and Leishmania donovani.
    Bioorganic & medicinal chemistry letters, 2020, 10-15, Volume: 30, Issue:20

    Topics: Antiparasitic Agents; Dose-Response Relationship, Drug; Heterocyclic Compounds; Leishmania donovani; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanosoma cruzi

2020
Production of Highly Active Antiparasitic Compounds from the Controlled Halogenation of the
    Journal of natural products, 2020, 09-25, Volume: 83, Issue:9

    Topics: Animals; Antiparasitic Agents; Bignoniaceae; Chromatography, High Pressure Liquid; Halogenation; Leishmania mexicana; Macrophages, Peritoneal; Magnetic Resonance Spectroscopy; Mice; Molecular Structure; Plant Extracts; Plant Roots; Spectrophotometry, Ultraviolet; Trypanocidal Agents; Trypanosoma cruzi

2020
Synthesis, biochemical, and biological evaluation of C2 linkage derivatives of amino sugars, inhibitors of glucokinase from Trypanosoma cruzi.
    Bioorganic & medicinal chemistry letters, 2021, 09-01, Volume: 47

    Topics: Amino Sugars; Dose-Response Relationship, Drug; Enzyme Inhibitors; Glucokinase; Molecular Structure; Structure-Activity Relationship; Trypanosoma cruzi

2021
[Treatment of Chagas disease].
    Anales de la Real Academia Nacional de Medicina, 1981, Volume: 98, Issue:4

    Topics: Amphotericin B; Animals; Chagas Disease; Drug Evaluation, Preclinical; Mice; Nifurtimox; Nitroimidazoles; Trypanocidal Agents

1981
Trypanocidal and leishmanicidal properties of substitution-containing chalcones.
    Antimicrobial agents and chemotherapy, 2003, Volume: 47, Issue:4

    Topics: Amphotericin B; Animals; Chalcone; Dose-Response Relationship, Drug; Leishmania braziliensis; Nitroimidazoles; Structure-Activity Relationship; Trypanosoma cruzi

2003
In vitro and in vivo trypanocidal synergistic activity of N-butyl-1-(4-dimethylamino)phenyl-1,2,3,4-tetrahydro-β-carboline-3-carboxamide associated with benznidazole.
    Antimicrobial agents and chemotherapy, 2012, Volume: 56, Issue:1

    Topics: Amphotericin B; Animals; Body Weight; Carbolines; Cell Count; Cell Line; Chagas Disease; Drug Combinations; Drug Resistance; Drug Synergism; Haplorhini; Heart; Humans; Ketoconazole; Life Cycle Stages; Male; Mice; Mice, Inbred BALB C; Nitroimidazoles; Survival Rate; Trypanocidal Agents; Trypanosoma cruzi

2012
Evaluation of benznidazole treatment combined with nifurtimox, posaconazole or AmBisome® in mice infected with Trypanosoma cruzi strains.
    International journal of antimicrobial agents, 2012, Volume: 40, Issue:6

    Topics: Amphotericin B; Animals; Chagas Disease; Disease Models, Animal; DNA, Protozoan; Drug Therapy, Combination; Female; Mice; Mice, Inbred BALB C; Nifurtimox; Nitroimidazoles; Parasite Load; Parasitemia; Real-Time Polymerase Chain Reaction; Treatment Outcome; Triazoles; Trypanocidal Agents; Trypanosoma cruzi

2012
A Practical Green Synthesis and Biological Evaluation of Benzimidazoles Against Two Neglected Tropical Diseases: Chagas and Leishmaniasis.
    Current medicinal chemistry, 2017, Volume: 24, Issue:41

    Topics: Amphotericin B; Antiprotozoal Agents; Benzimidazoles; Chagas Disease; Green Chemistry Technology; Heating; Leishmania mexicana; Leishmaniasis; Microwaves; Nifurtimox; Nitroimidazoles; Trypanosoma cruzi

2017