benzonidazole has been researched along with amphotericin b in 48 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (2.08) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (8.33) | 29.6817 |
2010's | 38 (79.17) | 24.3611 |
2020's | 5 (10.42) | 2.80 |
Authors | Studies |
---|---|
Berecibar, A; Davioud-Charvet, E; Debreu, MA; Girault, S; Grellier, P; Lemière, P; Maes, L; Mouray, E; Sergheraert, C | 1 |
da Silva, DG; da Silva, LE; Joussef, AC; Pacheco, LK; Rebelo, RA; Schmidt, B; Steindel, M | 1 |
del Olmo, E; Giménez, A; López-Pérez, JL; Rebollo, O; Ruiz, G; San Feliciano, A | 1 |
García-Mera, X; González-Díaz, H; Prado-Prado, FJ | 1 |
Aponte, JC; Arevalo, J; Bustamante, JM; Castillo, D; Estevez, Y; Franzblau, SG; Gilman, RH; Gonzalez, G; Hammond, GB; Málaga, E; Pauli, GF; Quiliano, M; Sauvain, M; Tarleton, RL; Vaisberg, AJ; Verástegui, M; Wang, Y; Zimic, M | 1 |
Baumann, K; Bischof, SK; Bringmann, G; Brun, R; Dreher, J; Gulder, T; Kaiser, M; Moll, H; Müller, S; Stich, A; Winter, C | 1 |
Alves, RJ; Borgati, TF; de Oliveira, RB; de Souza Pietra, RC; Fernandes, AP; Júnior, PA; Lopes, MS; Romanha, AJ; Romeiro, CF; Souza-Fagundes, EM | 1 |
Izumi, E; Nakamura, CV; Pinto, AC; Ueda-Nakamura, T; Veiga, VF | 1 |
Costa, SP; da Rocha, LF; de Melo, CM; de Oliveira Filho, GB; de Simone, CA; Ferreira, RS; Fradico, JR; Guimarães, ET; Hernandes, MZ; Leite, AC; Meira, CS; Moreira, DR; Pereira, VR; Rabello, MM; Soares, MB; Srivastava, RM | 1 |
Gehrke, SS; Hider, RC; Pinto, EG; Pleban, K; Steverding, D; Tempone, AG; Wagner, GK | 1 |
Chattopadhyaya, J; Dixit, SS; Földesi, A; Upadhayaya, RS | 1 |
Arafa, RK; Boykin, DW; Brun, R; Ismail, MA; Jones, SK; Pandharkar, T; Patrick, DA; Tidwell, RR; Wenzler, T; Werbovetz, KA; Zhu, X | 1 |
Alves, ÉV; Braga, SF; Coelho, EF; de Oliveira, RB; Duarte, MC; Ferreira, RS; Fradico, JR; Júnior, PA; Lage, PS; Ribeiro, TG; Romanha, AJ; Steindel, M; Tonini, ML | 1 |
de Assis, FF; de Oliveira, KT; Fill, TP; Garcia, FP; Kaplum, V; Lazarin-Bidóia, D; Nakamura, CV; Rodrigues-Filho, E; Ud Din, Z | 1 |
Álvarez, G; Arias Rivas, CE; Cerecetto, H; Chorilli, M; Cuchilla, K; Echeverría, GA; Escobar, P; Gabay, M; González, M; Leal, SM; Márquez, P; Piro, OE; Serna, E; Torres, S; Varela, J; Vera de Bilbao, NI; Yaluff, G | 1 |
Boykin, DW; Brun, R; Liu, ZY; Wenzler, T; Zhu, X | 1 |
Freitas-Junior, LH; Goo, J; Han, D; Kim, S; Kong, S; Lee, N; Oh, S; Siqueira-Neto, JL; Song, R; Yang, G | 1 |
Cogo, J; Corrêa, AG; Kaplum, V; Nakamura, CV; Sangi, DP; Ueda-Nakamura, T | 1 |
Abonia, R; Becerra, D; Cobo, J; Echeverry, C; Insuasty, B; Muñoz, JA; Nogueras, M; Ospina, V; Quiroga, J; Ramírez, J; Robledo, SM; Upegui, Y; Vélez, ID | 1 |
Bolzani, Vda S; de Almeida, L; dos Santos, MB; Dutra, LA; Graminha, MA; Michels, PA; Passalacqua, TG; Regasini, LO; Torres, FA; Velásquez, AM; Yamasaki, PR | 1 |
Amata, E; Devine, W; Erath, J; Lee, PJ; Leed, SE; Mensa-Wilmot, K; Patel, G; Pollastri, MP; Rodriguez, A; Roncal, NE; Sciotti, RJ; Swaminathan, U; Woodring, JL | 1 |
Carda, M; Cardona, W; Castrillón, W; Coa, JC; Muñoz, JA; Ospina, V; Robledo, SM; Vélez, ID | 1 |
Bosc, D; Cojean, S; Dubois, J; Franco, CH; Freitas-Junior, LH; Grellier, P; Loiseau, PM; Moraes, CB; Mouray, E | 1 |
Alakurtti, S; Brun, R; Jaffe, CL; Kaiser, M; Kopelyanskiy, D; Moreira, VM; Nasereddin, A; Oksman-Caldentey, KM; Pirttimaa, M; Yli-Kauhaluoma, J | 1 |
de Moraes, MH; Kamdoum, BC; Kuete, V; Ngadjui, BT; Sandjo, LP; Steindel, M | 1 |
Bernardes, LSC; da Rosa, R; de Moraes, MH; Schenkel, EP; Steindel, M; Zimmermann, LA | 1 |
Jäger, SN; Labadie, GR; Lepesheva, GI; Nocito, I; Porta, EOJ; Serra, EC; Tekwani, BL | 1 |
Agut, R; Carda, M; Cardona, WI; García, E; Otero, E; Palacios, G; Robledo, SM; Vélez, ID; Yepes, LM | 1 |
Alcantara, LM; Cordeiro-da-Silva, A; Costantino, L; Costi, MP; Ellinger, B; Ferrari, S; Franco, CH; Freitas-Junior, LH; Gul, S; Kuzikov, M; Linciano, P; Luciani, R; Macedo, S; Moraes, CB; Pascoalino, B; Quotadamo, A; Santarem, N; Witt, G | 1 |
Din, ZU; Garcia, FP; Lazarin-Bidóia, D; Nakamura, CV; Peron, F; Rodrigues-Filho, E; Rodríguez, IC; Soman de Medeiros, L; Trapp, MA; Wadood, A | 1 |
Cantizani, J; Cogo, J; Corrêa, AG; Cotillo, I; Filho, BPD; Martín, JJ; Nakamura, CV; Sangi, DP; Ueda-Nakamura, T | 1 |
Bernardes, LSC; da Rosa, R; de Melo, EB; de Moraes, MH; Paula, FR; Schenkel, EP; Steindel, M; Zimmermann, LA | 1 |
Bernardes, LSC; da Rosa, R; de Moraes, MH; Schappo, AD; Schenkel, EP; Schneider, NFZ; Simões, CMO; Steindel, M; Zimmermann, LA | 1 |
Amata, E; Behera, R; Erath, J; Guyett, P; Leed, SE; Mensa-Wilmot, K; Patel, G; Penn, E; Pollastri, MP; Rodriguez, A; Roncal, N; Sciotti, RJ; Sharma, A; Singh, B; Wiedeman, J; Woodring, JL | 1 |
Azas, N; Basmaciyan, L; Belle Mbou, V; Boudot, C; Bourgeade-Delmas, S; Boutet-Robinet, É; Casanova, M; Castera-Ducros, C; Cohen, A; Courtioux, B; Fairlamb, AH; Fersing, C; Hutter, S; Laget, M; Milne, R; Pedron, J; Piednoel, M; Primas, N; Rathelot, P; Since, M; Sournia-Saquet, A; Valentin, A; Vanelle, P; Verhaeghe, P; Wyllie, S | 1 |
Baptista, C; Bonucci, A; Cordeiro-da-Silva, A; Costantino, L; Costi, MP; di Pisa, F; Ellinger, B; Ferrari, S; Franco, C; Gul, S; Iacono, LD; Kuzikov, M; Landi, G; Linciano, P; Luciani, R; Mangani, S; Moraes, CB; Müller, W; Pöhner, I; Pozzi, C; Quotadamo, A; Santarem, N; Sesenna, A; Witt, G; Wittig, U | 1 |
Awori, RM; Bode, HB; Groß, J; Kaiser, M; Opatz, T; Zhao, L | 1 |
Azas, N; Cohen, A; Crozet, MD; Docampo, R; Kabri, Y; Mathias, F; Negrão, NW; Vanelle, P | 1 |
Azas, N; Boudot, C; Bourgeade-Delmas, S; Boutet-Robinet, É; Brossas, JY; Castera-Ducros, C; Corvaisier, S; Courtioux, B; Destere, A; Fairlamb, AH; Fersing, C; Hutter, S; Malzert-Fréon, A; Mazier, D; Paoli-Lombardo, R; Paris, L; Pedron, J; Pinault, E; Primas, N; Rathelot, P; Seguy, L; Since, M; Sournia-Saquet, A; Stigliani, JL; Valentin, A; Vanelle, P; Verhaeghe, P; Wyllie, S | 1 |
La-Venia, A; Labadie, GR; Medrán, NS; Pereira, CA; Sayé, M; Tekwani, BL | 1 |
Bastos, TM; Borges, JN; da Rocha, CQ; de Sousa, KAF; Grimaldi, GB; Marcourt, L; Morin, H; Neuenschwander, A; Queiroz, EF; Rivara-Minten, E; Rocha, VPC; Soares, MBP; Wolfender, JL | 1 |
Carey, SM; D'Antonio, EL; Gracz, H; Green, SB; Lanier, RJ; Morgan, DR; Rodriguez, A; Sherman, J | 1 |
Abitbol, H | 1 |
Assreuy, J; Calixto, JB; Corrêa, R; Eger-Mangrich, I; Grisard, EC; Guzela, M; Lunardi, F; Rodrigues, AT; Santos, AR; Steindel, M | 1 |
Dias Filho, BP; Kaneshima, EN; Nakamura, CV; Sarragiotto, MH; Silva, SO; Tonin, LT; Ueda-Nakamura, T; Valdez, RH; Yamada-Ogatta, SF; Yamauchi, LM | 1 |
Carlier, Y; Cencig, S; Coltel, N; Truyens, C | 1 |
Barrett, MP; Croft, SL | 1 |
Bandyopadhyay, D; Banik, BK; Nogueda-Torres, B; Rivera, G; Samano, S; Sanchez-Torres, LE; Villalobos-Rocha, JC | 1 |
1 review(s) available for benzonidazole and amphotericin b
Article | Year |
---|---|
Management of trypanosomiasis and leishmaniasis.
Topics: Administration, Oral; Africa; Amphotericin B; Antiprotozoal Agents; Benzamides; Boron Compounds; Chagas Disease; Drug Therapy, Combination; Humans; India; Leishmaniasis; Nitroimidazoles; Pentamidine; Triazoles; Trypanosomiasis, African | 2012 |
47 other study(ies) available for benzonidazole and amphotericin b
Article | Year |
---|---|
Antimalarial, antitrypanosomal, and antileishmanial activities and cytotoxicity of bis(9-amino-6-chloro-2-methoxyacridines): influence of the linker.
Topics: Acridines; Animals; Antimalarials; Cell Line; Leishmania infantum; Plasmodium falciparum; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma brucei brucei; Trypanosoma cruzi | 2000 |
Synthesis and in vitro evaluation of leishmanicidal and trypanocidal activities of N-quinolin-8-yl-arylsulfonamides.
Topics: Animals; Antiprotozoal Agents; Copper; Inhibitory Concentration 50; Leishmania; Molecular Structure; Organometallic Compounds; Parasitic Sensitivity Tests; Quinolines; Sulfonamides; Trypanocidal Agents; Trypanosoma cruzi; Zinc | 2007 |
Leishmanicidal and trypanocidal activities of 2-aminocyclohexanol and 1,2-cyclohexanediamine derivatives.
Topics: Animals; Cyclohexanes; Cyclohexanols; Diamines; Inhibitory Concentration 50; Leishmania; Sphingosine; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma cruzi | 2008 |
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics | 2010 |
Trypanoside, anti-tuberculosis, leishmanicidal, and cytotoxic activities of tetrahydrobenzothienopyrimidines.
Topics: Antiprotozoal Agents; Antitubercular Agents; Cell Line, Tumor; Humans; Mycobacterium tuberculosis; Parasitic Sensitivity Tests; Pyrimidines; Trypanosoma cruzi | 2010 |
QSAR guided synthesis of simplified antiplasmodial analogs of naphthylisoquinoline alkaloids.
Topics: Alkaloids; Animals; Antimalarials; Isoquinolines; Magnetic Resonance Spectroscopy; Models, Molecular; Plasmodium falciparum; Quantitative Structure-Activity Relationship; Spectrometry, Mass, Electrospray Ionization; Spectroscopy, Fourier Transform Infrared | 2010 |
Synthesis and evaluation of the anti parasitic activity of aromatic nitro compounds.
Topics: Antiparasitic Agents; Cell Survival; Chemistry Techniques, Synthetic; Humans; Inhibitory Concentration 50; Leishmania; Lymphocytes; Nitro Compounds; Trypanosoma cruzi | 2011 |
Terpenes from Copaifera demonstrated in vitro antiparasitic and synergic activity.
Topics: Animals; Cell Line; Cell Membrane; Diterpenes; Drug Synergism; Erythrocytes; Fabaceae; Life Cycle Stages; Lipid Peroxidation; Mitochondria; Oxidative Stress; Parasitic Sensitivity Tests; Sesquiterpenes; Structure-Activity Relationship; Terpenes; Trypanocidal Agents; Trypanosoma cruzi | 2012 |
Structural investigation of anti-Trypanosoma cruzi 2-iminothiazolidin-4-ones allows the identification of agents with efficacy in infected mice.
Topics: Animals; Cell Proliferation; Chagas Disease; Computer Simulation; Cysteine Endopeptidases; Female; Imines; Mice; Mice, Inbred BALB C; Models, Molecular; Protein Binding; Protozoan Proteins; Spleen; Stereoisomerism; Structure-Activity Relationship; Thiazolidines; Trypanocidal Agents; Trypanosoma cruzi | 2012 |
Conjugation to 4-aminoquinoline improves the anti-trypanosomal activity of Deferiprone-type iron chelators.
Topics: Aminoquinolines; Antiprotozoal Agents; Deferiprone; Dose-Response Relationship, Drug; Iron Chelating Agents; Leishmania infantum; Molecular Structure; Parasitic Sensitivity Tests; Plasmodium falciparum; Pyridones; Structure-Activity Relationship; Trypanosoma brucei brucei; Trypanosoma cruzi | 2013 |
New antiprotozoal agents: their synthesis and biological evaluations.
Topics: Amphotericin B; Antiprotozoal Agents; Cell Line; Cell Survival; Humans; Leishmania infantum; Nifurtimox; Nitroimidazoles; Parasitic Sensitivity Tests; Quinolines; Structure-Activity Relationship; Trypanosoma brucei brucei; Trypanosoma brucei rhodesiense; Trypanosoma cruzi | 2013 |
Synthesis and antiprotozoal activity of dicationic m-terphenyl and 1,3-dipyridylbenzene derivatives.
Topics: Animals; Antiprotozoal Agents; Benzene; Chagas Disease; Female; Leishmania donovani; Mice; Mice, Inbred Strains; Models, Chemical; Molecular Structure; Parasitic Sensitivity Tests; Plasmodium falciparum; Pyridines; Structure-Activity Relationship; Terphenyl Compounds; Trypanosoma cruzi | 2013 |
Synthesis and evaluation of the antiparasitic activity of bis-(arylmethylidene) cycloalkanones.
Topics: Animals; Antiprotozoal Agents; Cell Line; Chagas Disease; Fibroblasts; Humans; Leishmania mexicana; Leishmaniasis, Cutaneous; Macrophages; Mice; Models, Molecular; Trypanosoma cruzi | 2014 |
Unsymmetrical 1,5-diaryl-3-oxo-1,4-pentadienyls and their evaluation as antiparasitic agents.
Topics: Animals; Antiparasitic Agents; Benzaldehydes; Cells, Cultured; Chemistry Techniques, Synthetic; Drug Evaluation, Preclinical; Ketones; Leishmania; Macrophages; Mice; Molecular Structure; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma cruzi | 2014 |
Optimization of antitrypanosomatid agents: identification of nonmutagenic drug candidates with in vivo activity.
Topics: Animals; Drug Stability; Female; Mice; Mice, Inbred BALB C; Mutation; Trypanocidal Agents; Trypanosoma cruzi | 2014 |
Synthesis and antiparasitic activity of new bis-arylimidamides: DB766 analogs modified in the terminal groups.
Topics: Amides; Animals; Antiparasitic Agents; Cell Line; Chemistry Techniques, Synthetic; Leishmania; Plasmodium falciparum; Rats; Trypanosoma | 2014 |
Synthesis and biological evaluation of 2,3-dihydroimidazo[1,2-a]benzimidazole derivatives against Leishmania donovani and Trypanosoma cruzi.
Topics: Antiparasitic Agents; Benzimidazoles; Cells, Cultured; Dose-Response Relationship, Drug; Heterocyclic Compounds, 3-Ring; Humans; Leishmania donovani; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanosoma cruzi | 2014 |
Synthesis and biological evaluation of novel 2,3-disubstituted quinoxaline derivatives as antileishmanial and antitrypanosomal agents.
Topics: Antiprotozoal Agents; Dose-Response Relationship, Drug; Leishmania; Molecular Structure; Parasitic Sensitivity Tests; Quinoxalines; Structure-Activity Relationship; Trypanosoma cruzi | 2015 |
An efficient synthesis of new caffeine-based chalcones, pyrazolines and pyrazolo[3,4-b][1,4]diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents.
Topics: Antimalarials; Azepines; Caffeine; Chalcones; Chemistry Techniques, Synthetic; Humans; Inhibitory Concentration 50; Leishmania; Plasmodium falciparum; Pyrazoles; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma cruzi; U937 Cells | 2015 |
Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds.
Topics: Chalcone; Inhibitory Concentration 50; Leishmania infantum; Prenylation; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma cruzi | 2015 |
Protozoan Parasite Growth Inhibitors Discovered by Cross-Screening Yield Potent Scaffolds for Lead Discovery.
Topics: Animals; Antiprotozoal Agents; Drug Discovery; Drug Evaluation, Preclinical; Growth Inhibitors; Hep G2 Cells; Humans; Parasites; Quinazolines | 2015 |
Synthesis, leishmanicidal, trypanocidal and cytotoxic activity of quinoline-hydrazone hybrids.
Topics: Antiprotozoal Agents; Cell Line; Dose-Response Relationship, Drug; Humans; Hydrazones; Leishmania guyanensis; Macrophages; Molecular Structure; Parasitic Sensitivity Tests; Quinolines; Structure-Activity Relationship; Trypanosoma cruzi | 2015 |
Highly improved antiparasitic activity after introduction of an N-benzylimidazole moiety on protein farnesyltransferase inhibitors.
Topics: Alkyl and Aryl Transferases; Animals; Antiparasitic Agents; Cell Line; Enzyme Inhibitors; Humans; Imidazoles; Leishmania donovani; Leishmaniasis, Visceral; Malaria, Falciparum; Mice; Parasitic Sensitivity Tests; Plasmodium falciparum; Trypanosoma; Trypanosoma brucei brucei; Trypanosoma cruzi; Trypanosomiasis | 2016 |
Abietane-Type Diterpenoid Amides with Highly Potent and Selective Activity against Leishmania donovani and Trypanosoma cruzi.
Topics: Abietanes; Amides; Chagas Disease; Humans; Inhibitory Concentration 50; Leishmania donovani; Leishmaniasis; Macrophages; Molecular Structure; Nitroimidazoles; Parasitic Sensitivity Tests; Trypanocidal Agents; Trypanosoma cruzi | 2016 |
Individual and combined antiparasitic effect of six plant metabolites against Leishmania amazonensis and Trypanosoma cruzi.
Topics: Alkaloids; Anthraquinones; Antiparasitic Agents; Antiprotozoal Agents; Chagas Disease; Chalcones; Flavanones; Humans; Leishmania mexicana; Leishmaniasis, Cutaneous; Moraceae; Plant Extracts; Plants; Rubiaceae; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma cruzi; Zanthoxylum | 2016 |
Design and synthesis of a new series of 3,5-disubstituted isoxazoles active against Trypanosoma cruzi and Leishmania amazonensis.
Topics: Animals; Antiprotozoal Agents; Drug Design; Furans; Isoxazoles; Leishmania infantum; Leishmania mexicana; Leishmaniasis; Lignans; Molecular Structure; NADH, NADPH Oxidoreductases; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanosoma cruzi | 2017 |
Antitrypanosomal and antileishmanial activity of prenyl-1,2,3-triazoles.
Topics: | 2017 |
Triclosan-caffeic acid hybrids: Synthesis, leishmanicidal, trypanocidal and cytotoxic activities.
Topics: Antiprotozoal Agents; Caffeic Acids; Cell Line; Cell Survival; Dose-Response Relationship, Drug; Humans; Leishmania; Macrophages; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Triclosan; Trypanosoma cruzi | 2017 |
Aryl thiosemicarbazones for the treatment of trypanosomatidic infections.
Topics: Antiprotozoal Agents; Chagas Disease; Dose-Response Relationship, Drug; Humans; Macrophages; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Thiosemicarbazones; Trypanosoma | 2018 |
Symmetrical and unsymmetrical substituted 2,5-diarylidene cyclohexanones as anti-parasitic compounds.
Topics: Animals; Antiparasitic Agents; Cell Line; Cell Survival; Cyclohexanones; Dose-Response Relationship, Drug; Leishmania; Macaca mulatta; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanosoma cruzi | 2018 |
Quinoxaline derivatives as potential antitrypanosomal and antileishmanial agents.
Topics: Antiprotozoal Agents; Dose-Response Relationship, Drug; Leishmania donovani; Molecular Structure; Parasitic Sensitivity Tests; Quinoxalines; Structure-Activity Relationship; Trypanosoma brucei brucei; Trypanosoma cruzi | 2018 |
Synthesis and SAR of new isoxazole-triazole bis-heterocyclic compounds as analogues of natural lignans with antiparasitic activity.
Topics: Antiprotozoal Agents; Carbon-13 Magnetic Resonance Spectroscopy; Drug Evaluation, Preclinical; Heterocyclic Compounds; Humans; Isoxazoles; Leishmania; Lignans; NADH, NADPH Oxidoreductases; Proton Magnetic Resonance Spectroscopy; Spectrophotometry, Infrared; Structure-Activity Relationship; THP-1 Cells; Triazoles; Trypanosoma cruzi | 2018 |
Synthesis and biological evaluation of isoxazolyl-sulfonamides: A non-cytotoxic scaffold active against Trypanosoma cruzi, Leishmania amazonensis and Herpes Simplex Virus.
Topics: Animals; Antiviral Agents; Cell Line, Tumor; Cell Survival; Chlorocebus aethiops; Humans; Isoxazoles; Leishmania; Molecular Structure; Simplexvirus; Structure-Activity Relationship; Sulfonamides; Trypanocidal Agents; Trypanosoma cruzi; Vero Cells | 2018 |
Series of Alkynyl-Substituted Thienopyrimidines as Inhibitors of Protozoan Parasite Proliferation.
Topics: | 2018 |
Nongenotoxic 3-Nitroimidazo[1,2-
Topics: | 2019 |
Enhancement of Benzothiazoles as Pteridine Reductase-1 Inhibitors for the Treatment of Trypanosomatidic Infections.
Topics: Animals; Antiprotozoal Agents; Benzothiazoles; Binding Sites; Catalytic Domain; Crystallography, X-Ray; Drug Design; Enzyme Inhibitors; Half-Life; Leishmania major; Mice; Mice, Inbred BALB C; Molecular Docking Simulation; Oxidoreductases; Protozoan Proteins; Structure-Activity Relationship; Trypanosoma brucei brucei; Trypanosomiasis | 2019 |
Structure, Biosynthesis, and Bioactivity of Photoditritide from
Topics: Anti-Bacterial Agents; Antiprotozoal Agents; Microbial Sensitivity Tests; Micrococcus luteus; Molecular Structure; Photorhabdus; Spectrum Analysis; Trypanosoma brucei rhodesiense | 2019 |
Synthesis and in vitro evaluation of new 5-substituted 6-nitroimidazooxazoles as antikinetoplastid agents.
Topics: Antiprotozoal Agents; Dose-Response Relationship, Drug; Leishmania donovani; Molecular Structure; Nitroimidazoles; Oxazoles; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanosoma cruzi | 2020 |
8-Alkynyl-3-nitroimidazopyridines display potent antitrypanosomal activity against both T. b. brucei and cruzi.
Topics: Dose-Response Relationship, Drug; Molecular Structure; Nitroimidazoles; Parasitic Sensitivity Tests; Pyridines; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma brucei brucei; Trypanosoma cruzi | 2020 |
Expanding the scope of synthetic 1,2,4-trioxanes towards Trypanosoma cruzi and Leishmania donovani.
Topics: Antiparasitic Agents; Dose-Response Relationship, Drug; Heterocyclic Compounds; Leishmania donovani; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanosoma cruzi | 2020 |
Production of Highly Active Antiparasitic Compounds from the Controlled Halogenation of the
Topics: Animals; Antiparasitic Agents; Bignoniaceae; Chromatography, High Pressure Liquid; Halogenation; Leishmania mexicana; Macrophages, Peritoneal; Magnetic Resonance Spectroscopy; Mice; Molecular Structure; Plant Extracts; Plant Roots; Spectrophotometry, Ultraviolet; Trypanocidal Agents; Trypanosoma cruzi | 2020 |
Synthesis, biochemical, and biological evaluation of C2 linkage derivatives of amino sugars, inhibitors of glucokinase from Trypanosoma cruzi.
Topics: Amino Sugars; Dose-Response Relationship, Drug; Enzyme Inhibitors; Glucokinase; Molecular Structure; Structure-Activity Relationship; Trypanosoma cruzi | 2021 |
[Treatment of Chagas disease].
Topics: Amphotericin B; Animals; Chagas Disease; Drug Evaluation, Preclinical; Mice; Nifurtimox; Nitroimidazoles; Trypanocidal Agents | 1981 |
Trypanocidal and leishmanicidal properties of substitution-containing chalcones.
Topics: Amphotericin B; Animals; Chalcone; Dose-Response Relationship, Drug; Leishmania braziliensis; Nitroimidazoles; Structure-Activity Relationship; Trypanosoma cruzi | 2003 |
In vitro and in vivo trypanocidal synergistic activity of N-butyl-1-(4-dimethylamino)phenyl-1,2,3,4-tetrahydro-β-carboline-3-carboxamide associated with benznidazole.
Topics: Amphotericin B; Animals; Body Weight; Carbolines; Cell Count; Cell Line; Chagas Disease; Drug Combinations; Drug Resistance; Drug Synergism; Haplorhini; Heart; Humans; Ketoconazole; Life Cycle Stages; Male; Mice; Mice, Inbred BALB C; Nitroimidazoles; Survival Rate; Trypanocidal Agents; Trypanosoma cruzi | 2012 |
Evaluation of benznidazole treatment combined with nifurtimox, posaconazole or AmBisome® in mice infected with Trypanosoma cruzi strains.
Topics: Amphotericin B; Animals; Chagas Disease; Disease Models, Animal; DNA, Protozoan; Drug Therapy, Combination; Female; Mice; Mice, Inbred BALB C; Nifurtimox; Nitroimidazoles; Parasite Load; Parasitemia; Real-Time Polymerase Chain Reaction; Treatment Outcome; Triazoles; Trypanocidal Agents; Trypanosoma cruzi | 2012 |
A Practical Green Synthesis and Biological Evaluation of Benzimidazoles Against Two Neglected Tropical Diseases: Chagas and Leishmaniasis.
Topics: Amphotericin B; Antiprotozoal Agents; Benzimidazoles; Chagas Disease; Green Chemistry Technology; Heating; Leishmania mexicana; Leishmaniasis; Microwaves; Nifurtimox; Nitroimidazoles; Trypanosoma cruzi | 2017 |