benzofurans has been researched along with triphenyltetrazolium* in 3 studies
3 other study(ies) available for benzofurans and triphenyltetrazolium
Article | Year |
---|---|
DL-3-n-Butylphthalide, an anti-oxidant agent, prevents neurological deficits and cerebral injury following stroke per functional analysis, magnetic resonance imaging and histological assessment.
DL-3-n-Butylphthalide (NBP) is a synthetic compound based on L-3-n-Butylphthalide which was isolated from seeds of Apium graveolens. The present study aims at evaluating the outcome of NBP given prior to and after the onset of ischemic stroke in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Stroke was induced by the middle cerebral artery occlusion (MCAO) in SHR and WKY. For pre-treatment, NBP was administered to SHR and WKY daily for two months prior to MCAO. For post-treatment, NBP was given daily for seven consecutive days after MCAO. Seven days post-surgery, rats were tested for the presence of neurological deficits. Magnetic resonance imaging (MRI) and 2,3,5-triphenyltetrazolium chloride (TTC) staining were employed to calculate the infarct volume. The cerebral cortex and corpus striatum in the ischemic penumbra area were examined microscopically for pathological changes. In SHR, NBP pre- and post-treatment significantly lowered neurological deficit scores, reduced infarct volume, and minimized pathological changes in the penumbra area when compared to oil-vehicle treated controls. In WKY, these beneficial effects were observed only in the post-treatment group. The beneficial effects of NBP post-treatment were greater in WKY than in SHR. Results indicated that NBP could exert both preventive and therapeutic effects on ischemic stroke in SHR, but only exerted therapeutic effect in WKY. Topics: Analysis of Variance; Animals; Antioxidants; Benzofurans; Brain Infarction; Brain Injuries; Cerebral Cortex; Disease Models, Animal; Infarction, Middle Cerebral Artery; Magnetic Resonance Imaging; Male; Nervous System Diseases; Neurologic Examination; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Tetrazolium Salts | 2012 |
Attenuation of ischemia-induced rat brain injury by 2-(-2-benzofuranyl)-2-imidazoline, a high selectivity ligand for imidazoline I(2) receptors.
The aim of this study was to determine whether 2-(2-benzofuranyl)-2-imidazoline, an imidazoline I(2) receptor ligand, could protect against cell death from brain injury and improve the functional outcome after focal cerebral ischemia in rats.. Transient focal ischemia was induced by suture occlusion of the middle cerebral artery. Rats were intraperitoneally treated with a vehicle, 2-(2-benzofuranyl)-2-imidazoline or idazoxan immediately after focal ischemia. Infarct volume was assessed by 2,3,5-triphenyltrazolium chloride staining and neurobehavioral deficits were monitored. The volume of cell death in the penumbra after ischemia was determined by immunostaining using anti-cleaved caspase-3 antibody and terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL).. Both 2-(2-benzofuranyl)-2-imidazoline and idazoxan significantly improved the neurological score compared with the vehicle at 24 hours after focal ischemia. Treatment with 2-(2-benzofuranyl)-2-imidazoline or idazoxan also significantly reduced infarct volume and the number of both caspase-3- and TUNEL-positive cells in the penumbra compared with vehicle-treated rats (p<0.01 and p<0.05, respectively).. The results suggest the neuroprotective role of 2-(2-benzofuranyl)-2-imidazoline and idazoxan in focal cerebral ischemia, and may therefore represent useful targets for developing new treatments for stroke. Topics: Animals; Benzofurans; Brain Injuries; Brain Ischemia; Caspase 3; Disease Models, Animal; Idazoxan; Imidazoles; Imidazoline Receptors; In Situ Nick-End Labeling; Male; Neurologic Examination; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Tetrazolium Salts | 2009 |
Anandamide content is increased and CB1 cannabinoid receptor blockade is protective during transient, focal cerebral ischemia.
The role of endocannabinoid signaling in the response of the brain to injury is tantalizing but not clear. In this study, transient middle cerebral artery occlusion (MCAo) was used to produce ischemia/reperfusion injury. Brain content of N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol were determined during MCAo. Whole brain AEA content was significantly increased after 30, 60 and 120 min MCAo compared with sham-operated brain. The increase in AEA was localized to the ischemic hemisphere after 30 min MCAo, but at 60 and 120 min, was also increased in the contralateral hemisphere. 2-Arachidonoylglycerol content was unaffected by MCAo. In a second set of studies, injury was assessed 24 h after 2 h MCAo. Rats administered a single dose (3 mg/kg) of the cannabinoid receptor type 1 (CB1) receptor antagonist SR141716 prior to MCAo exhibited a 50% reduction in infarct volume and a 40% improvement in neurological function compared with vehicle control. A second CB1 receptor antagonist, LY320135 (6 mg/kg), also significantly improved neurological function. The CB1 receptor agonist, WIN 55212-2 (0.1-1 mg/kg) did not affect either infarct volume or neurological score. Topics: Animals; Arachidonic Acids; Benzofurans; Benzoxazines; Blood Pressure; Brain Chemistry; Brain Infarction; Chromatography, Liquid; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Hemodynamics; Infarction, Middle Cerebral Artery; Ischemic Attack, Transient; Male; Mass Spectrometry; Morpholines; Naphthalenes; Neurologic Examination; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Reperfusion Injury; Rimonabant; Tetrazolium Salts; Time Factors | 2004 |