benzofurans and lucifer-yellow

benzofurans has been researched along with lucifer-yellow* in 3 studies

Other Studies

3 other study(ies) available for benzofurans and lucifer-yellow

ArticleYear
Beyond Gap Junction Channel Function: the Expression of Cx43 Contributes to Aldosterone-Induced Mesangial Cell Proliferation via the ERK1/2 and PKC Pathways.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2015, Volume: 36, Issue:3

    This study aimed to explore the precise mechanism and signaling pathways of mesangial cell (MC) proliferation from a new point of view considering Connexin 43 (Cx43).. MC proliferation was measured by the incorporation of 3H-thymidine (3H-TdR). Cx43 was over-expressed in MC cells using lipofectamine 2000, and the expression level was tested with reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses. The gap junction channel function was explored by Lucifer Yellow scrape loading and dye transfer (SLDT), and the intracellular calcium concentrations ([Ca(2+)]i) were characterized by confocal microscopy on cells loaded with Fura-3/AM.. There was an inverse correlation between Cx43 expression and MC proliferation (P<0.05). SLDT studies revealed that there was no difference in the gap junction channel function between the normal and Aldosterone (Aldo)-stimulated groups (P>0.05). Our data also showed that the mineralcorticoid receptor (MR) antagonist spironolactone, ERK1/2 inhibitor PD98059 and PKC inhibitor GF109203X could attenuate the down-regulation of Cx43 expression in Aldo-induced MC proliferation; however, the PI3K inhibitor LY294002 could block MC proliferation without affecting Cx43 expression at either the mRNA or protein level. In addition, Aldo promoted MC proliferation in parallel with increasing [Ca(2+)]i (P<0.05), suggesting that the classical PKC pathway might be activated.. Our study provides preliminary evidence that Cx43 is an important regulator of Aldo-promoted MC proliferation. Furthermore, reduced Cx43 expression promoted MC proliferation independent of the gap junction channel function, and this process might be mediated through the ERK1/2- and PKC-dependent pathways.

    Topics: Aldosterone; Animals; Benzofurans; Calcium; Cell Communication; Cell Line; Cell Proliferation; Chromones; Connexin 43; Flavonoids; Fluorescent Dyes; Gap Junctions; Gene Expression Regulation; Indoles; Isoquinolines; Maleimides; Mesangial Cells; Mineralocorticoid Receptor Antagonists; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Morpholines; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase C; Rats; Receptors, Mineralocorticoid; Signal Transduction; Spironolactone

2015
The endothelial component of cannabinoid-induced relaxation in rabbit mesenteric artery depends on gap junctional communication.
    The Journal of physiology, 1999, Oct-15, Volume: 520 Pt 2

    1. We have shown that the endocannabinoid anandamide and its stable analogue methanandamide relax rings of rabbit superior mesenteric artery through endothelium-dependent and -independent mechanisms that are unaffected by blockade of NO synthase and cyclooxygenase. 2. The endothelium-dependent component of the responses was attenuated by the gap junction inhibitor 18alpha-glycyrrhetinic acid (18alpha-GA; 50 microM), and a synthetic connexin-mimetic peptide homologous to the extracellular Gap 27 sequence of connexin 43 (43Gap 27, SRPTEKTIFII; 300 microM). By contrast, the corresponding connexin 40 peptide (40Gap 27, SRPTEKNVFIV) was inactive. 3. The cannabinoid CB1 receptor antagonist SR141716A (10 microM) also attenuated endothelium-dependent relaxations but this inhibition was not observed with the CB1 receptor antagonist LY320135 (10 microM). Furthermore, SR141716A mimicked the effects of 43Gap 27 peptide in blocking Lucifer Yellow dye transfer between coupled COS-7 cells (a monkey fibroblast cell line), whereas LY320135 was without effect, thus suggesting that the action of SR141716A was directly attributable to effects on gap junctions. 4. The endothelium-dependent component of cannabinoid-induced relaxation was also attenuated by AM404 (10 microM), an inhibitor of the high-affinity anandamide transporter, which was without effect on dye transfer. 5. Taken together, the findings suggest that cannabinoids derived from arachidonic acid gain access to the endothelial cytosol via a transporter mechanism and subsequently stimulate relaxation by promoting diffusion of an to adjacent smooth muscle cells via gap junctions. 6. Relaxations of endothelium-denuded preparations to anandamide and methanandamide were unaffected by 43Gap 27 peptide, 18alpha-GA, SR141716A, AM404 and indomethacin and their genesis remains to be established.

    Topics: Acetylcholine; Animals; Arachidonic Acids; Benzofurans; Cannabinoid Receptor Modulators; Cannabinoids; COS Cells; Endocannabinoids; Gap Junctions; Glycyrrhetinic Acid; Indomethacin; Isoquinolines; Male; Mesenteric Artery, Superior; Muscle Relaxation; Muscle, Smooth, Vascular; NG-Nitroarginine Methyl Ester; Phenylephrine; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rabbits; Receptors, Cannabinoid; Receptors, Drug; Rimonabant

1999
Alpha 1-adrenergic stimulation and cytoplasmic free calcium concentration in cultured renal proximal tubular cells: evidence for compartmentalization of quin-2 and fura-2.
    Journal of cellular physiology, 1986, Volume: 128, Issue:3

    This study was designed to examine the role of changes in cytoplasmic free calcium concentration ([Ca2+]i) during the response to alpha 1-adrenergic agonists in cultured renal proximal tubular cells. Experiments were carried out on primary cultures of canine proximal tubular cells grown in defined culture medium on a solid support, on collagen-coated polycarbonate membranes, or on collagen-coated glass coverslips. Quin-2 and fura-2 were used to monitor [Ca2+]i. The basal level of [Ca2+]i was 101 nM, as measured with quin-2, and 122 nM, as determined using fura-2. Fluorescence flow cytometry revealed that about 85% of the population of proximal tubular cells responded to phenylephrine with an increase in [Ca2+]i. Phenylephrine (10(-5) M) caused an immediate actual increase in [Ca2+]i by 18 and 24%, as determined with quin-2 and fura-2, respectively, with the peak increase in [Ca2+]i averaging 22% and 44% over the basal level (180-300 sec). This effect did not require extracellular calcium. The effect of phenylephrine was abolished by prazosin and verapamil. Fluorescence microscopy of quin-2 or fura-2 loaded cells revealed punctate areas of fluorescence within the cytoplasm suggesting vesicular uptake of the dyes. Pinocytotic entrapment of the dyes was demonstrated by the transfer of cell-impermeant fura-2 across tubular cell monolayers mounted in Ussing chambers. The transfer of the dye was similar to that of a marker of fluid-phase pinocytosis, Lucifer Yellow (LY). This pinocytotic entrapment of Ca2+-indicators would lead to underestimation of the actual calcium transients. Microfluorometric study of single proximal tubular cells "scrape-loaded" with fura-2 revealed a four-fold increase in [Ca2+]i concentration following stimulation with phenylephrine.

    Topics: Aminoquinolines; Animals; Benzofurans; Calcium; Cell Compartmentation; Cells, Cultured; Cytoplasm; Dogs; Female; Fura-2; Isoquinolines; Kidney Tubules, Proximal; Male; Phenylephrine; Pinocytosis; Prazosin; Verapamil

1986