benzofurans has been researched along with jasmonic-acid* in 4 studies
4 other study(ies) available for benzofurans and jasmonic-acid
Article | Year |
---|---|
R2R3-MYB Transcription Factor SmMYB52 Positively Regulates Biosynthesis of Salvianolic Acid B and Inhibits Root Growth in
The dried root of Topics: Benzofurans; Cyclopentanes; Gene Expression Regulation, Plant; Indoleacetic Acids; Oxylipins; Plant Roots; Salvia miltiorrhiza; Transcription Factors | 2021 |
SmbHLH53 is relevant to jasmonate signaling and plays dual roles in regulating the genes for enzymes in the pathway for salvianolic acid B biosynthesis in Salvia miltiorrhiza.
Basic helix-loop-helix (bHLH) transcription factors play essential roles in myriad regulatory processes, including secondary metabolism. In this study with Salvia miltiorrhiza, we isolated and characterized SmbHLH53, which encodes a bHLH family member. Expression of this gene was significantly induced by wounding and multiple hormones, including methyl jasmonic acid; transcript levels were highest in the leaves and roots. Phylogenetic analysis indicated that SmbHLH53 clusters withAtbHLH17 and AtbHLH13, two negative regulators of jasmonate (JA) responses, and is localized in the nucleus and cell membrane. Yeast two-hybrid and bimolecular fluorescent complementation assays indicated that SmbHLH53 forms a homodimer as well as a heterodimer with SmbHLH37. It also interacts with both SmJAZs1/3/8 and SmMYC2, the core members of the JA signal pathway. Unexpectedly, we noted that overexpression of SmbHLH53 did not significantly influence the concentrations of rosmarinic acid and salvianolic acid B in transgenic plants. Results from yeast one-hybrid assays showed that SmbHLH53 binds to the promoters of SmTAT1, SmPAL1, and Sm4CL9, the key genes for enzymes in the pathway for phenolic acid synthesis. Assays of transient transcriptional activity demonstrated that SmbHLH53 represses the promoter of SmTAT1 while activating the promoter of Sm4CL9. Thus, the present work revealed that SmbHLH53 may play dual roles in regulating the genes for enzymes in the pathway for Sal B biosynthesis. Topics: Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Benzofurans; Biosynthetic Pathways; Cell Nucleus; Cyclopentanes; Oxylipins; Phylogeny; Plant Proteins; Promoter Regions, Genetic; Protein Interaction Maps; Protein Multimerization; Salvia miltiorrhiza; Secondary Metabolism; Signal Transduction | 2020 |
Overexpression of allene oxide cyclase promoted tanshinone/phenolic acid production in Salvia miltiorrhiza.
This study provides a desirable candidate gene resource (SmAOC) to increase the content of valuable natural products via appropriate JA pathway genetic engineering. Jasmonates (JAs) are important signal molecules in plants. They regulate transcripts of defense and secondary biosynthetic metabolite genes in response to environmental stresses. Currently, JAs are widely used as elicitors to improve the content of useful secondary metabolism in plants. Synthesis of the naturally occurring enantiomer of various jasmonates is catalyzed by allene oxide cyclase (AOC, EC 5.3.99.6). Here, we cloned and characterized the AOC gene (SmAOC) from Salvia miltiorrhiza. As expected, SmAOC expression was induced by abiotic stimuli such as methyl jasmonate (MeJA), ultraviolet radiation (UV) and low temperature (4 °C) in S. miltiorrhiza plantlets. To demonstrate whether the engineered internal JAs pool by overexpressing AOC gene could promote secondary metabolism production, the SmAOC was incorporated into S. miltiorrhiza hairy roots. The results revealed that SmAOC overexpression significant enhanced the yields of tanshinone IIA, rosmarinic acid (RA) and lithospermic acid B (LAB) in S. miltiorrhiza hairy roots. In addition, expression levels for key genes involved in the biosynthetic pathway of diterpenes and phenolic acids were also altered. These suggest that genetic manipulation of AOC would be helpful for improving the production of valuable secondary metabolites by regulating the biosynthesis of JAs. Topics: Abietanes; Acetates; Benzofurans; Cinnamates; Cloning, Molecular; Cold Temperature; Cyclopentanes; Depsides; Diterpenes; Escherichia coli; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Genes, Plant; Genetic Engineering; Genetic Vectors; Hydroxybenzoates; Intramolecular Oxidoreductases; Oxylipins; Plant Roots; Rosmarinic Acid; Salvia miltiorrhiza; Transgenes; Ultraviolet Rays | 2012 |
Effects of elicitors on the production of resveratrol and viniferins in cell cultures of Vitis vinifera L. cv Italia.
Methyl jasmonate, jasmonic acid and chitosan were tested as elicitors on cell suspension cultures obtained from Vitis vinifera cv Italia to investigate their effect on stilbene production. Stilbene accumulation in the callus, grown under nonelicited conditions, was also investigated. Calli and cell suspensions were obtained in a B5 culture medium supplemented with 0.2 mg L(-1) NAA and 1 mg L(-1) KIN. Stilbene determination was achieved by HPLC/DAD/MS. Whereas callus biosynthesized only piceid, cell suspensions elicited with jasmonates produced several stilbenes, mainly viniferins. In suspended cells, methyl jasmonate and jasmonic acid were the most effective in stimulating stilbene biosynthesis, whereas chitosan was less effective; in fact, the amount of stilbenes obtained with this elicitor was not significantly different from that obtained for the control cells. The maximum production of total stilbenes was at day 20 of culture with 0.970 and 1.023 mg g(-1) DW for MeJA and JA, respectively. Topics: Acetates; Benzofurans; Cells, Cultured; Chitosan; Cyclopentanes; Oxylipins; Plant Growth Regulators; Plant Stems; Resorcinols; Resveratrol; Stilbenes; Vitis | 2011 |