benzofurans has been researched along with hypericin* in 3 studies
3 other study(ies) available for benzofurans and hypericin
Article | Year |
---|---|
The role of water and structure on the generation of reactive oxygen species in peptide/hypericin complexes.
Hybrid associates formed between peptide assemblies and fluorophores are attractive mainly because of their unique properties for biomedical applications. Recently, we demonstrated that the production of reactive oxygen species (ROS) by hypericin and their stability in excited states are enhanced upon conjugation with l,l-diphenylalanine microtubes (FF-MNTs). Although the detailed mechanisms responsible for improving the photophysical properties of ROS remain unclear, tentative hypotheses have suggested that the driving force is the growth of overall dipolar moments ascribed either to coupling between aligned H2O dipoles within the ordered structures or to the organization of hypericin molecules on peptide interfaces. To provide new insights on ROS activity in hypericin/FF-MNTs hybrids and further explore the role of water in this respect, we present results obtained from investigations on the behavior of these complexes organized into different crystalline arrangements. Specifically, we monitored and compared the photophysical performance of hypericin bound to FF-MNTs with peptides organized in both hexagonal (water-rich) and orthorhombic (water-free) symmetries. From a theoretical perspective, we present the results of new molecular dynamics simulations that highlight the distinct hypericin/peptide interaction at the interface of FF-MNTs for the different symmetries. As a conclusion, we propose that although water enhances photophysical properties, the organization induced by peptide structures and the availability of a hydrophobic environment surrounding the hypericin/peptide interface are paramount to optimizing ROS generation. The findings presented here provide useful basic research insights for designing peptide/fluorophore complexes with outstanding technological potential. Topics: Anthracenes; Benzofurans; Hydrophobic and Hydrophilic Interactions; Kinetics; Molecular Dynamics Simulation; Oxidation-Reduction; Peptides; Perylene; Reactive Oxygen Species; Water; X-Ray Diffraction | 2014 |
Hypericin encapsulated in solid lipid nanoparticles: phototoxicity and photodynamic efficiency.
The hydrophobicity of some photosensitizers can induce aggregation in biological systems, which consequently reduces photodynamic activity. The conjugation of photosensitizers with nanocarrier systems can potentially be used to overcome this problem. The objective of this study was to prepare and characterise hypericin-loaded solid lipid nanoparticles (Hy-SLN) for use in photodynamic therapy (PDT). SLN were prepared using the ultrasonication technique, and their physicochemical properties were characterised. The mean particle size was found to be 153 nm, with a low polydispersity index of 0.28. One of the major advantages of the SLN formulation is its high entrapment efficiency (EE%). Hy-SLN showed greater than 80% EE and a drug loading capacity of 5.22% (w/w). To determine the photodynamic efficiency of Hy before and after encapsulation in SLN, the rate constants for the photodecomposition of two (1)O2 trapping reagents, DPBF and AU, were determined. These rate constants exhibited an increase of 60% and 50% for each method, respectively, which is most likely due to an increase in the lifetime of the triplet state caused by the increase in solubility. Hy-SLN presented a 30% increase in cell uptake and a correlated improvement of 26% in cytotoxicity. Thus, all these advantages suggest that Hy-loaded SLN has potential for use in PDT. Topics: Animals; Anthracenes; Benzofurans; Cell Line, Tumor; Cell Survival; Humans; Light; Lipids; Mice; Nanoparticles; Perylene; Photochemotherapy; Radiation-Sensitizing Agents; Singlet Oxygen; Uric Acid | 2013 |
Inhibitors of translation targeting eukaryotic translation initiation factor 4A.
The RNA helicases eIF4AI and eIF4AII play key roles in recruiting ribosomes to mRNA templates during eukaryotic translation initiation. Small molecule inhibitors of eIF4AI and eIF4AII have been useful for chemically dissecting their role in translation in vitro and in vivo. Here, we describe a screen performed on a small focused library of kinase inhibitors to identify a novel helicase inhibitor. We describe assays that have been critical for characterizing novel RNA helicase inhibitors. Topics: Animals; Anthracenes; Benzofurans; Epoxy Compounds; Eukaryotic Initiation Factor-4A; Humans; Macrolides; Perylene; Protein Kinase Inhibitors; Sterols; Thiazoles | 2012 |