benzofurans has been researched along with diphenyleneiodonium* in 2 studies
2 other study(ies) available for benzofurans and diphenyleneiodonium
Article | Year |
---|---|
PKCδ-IRAK1 axis regulates oxidized LDL-induced IL-1β production in monocytes.
This study examined the role of interleukin (IL)-1 receptor-associated kinase (IRAK) and protein kinase C (PKC) in oxidized LDL (Ox-LDL)-induced monocyte IL-1β production. In THP1 cells, Ox-LDL induced time-dependent secretory IL-1β and IRAK1 activity; IRAK4, IRAK3, and CD36 protein expression; PKCδ-JNK1 phosphorylation; and AP-1 activation. IRAK1/4 siRNA and inhibitor (INH)-attenuated Ox-LDL induced secreted IL-1β and pro-IL-1β mRNA and pro-IL-1β and mature IL-1β protein expression, respectively. Diphenyleneiodonium chloride (NADPH oxidase INH) and N-acetylcysteine (free radical scavenger) attenuated Ox-LDL-induced reactive oxygen species generation, caspase-1 activity, and pro-IL-1β and mature IL-1β expression. Ox-LDL-induced secretory IL-1β production was abrogated in the presence of JNK INH II, Tanshinone IIa, Ro-31-8220, Go6976, Rottlerin, and PKCδ siRNA. PKCδ siRNA attenuated the Ox-LDL-induced increase in IRAK1 kinase activity, JNK1 phosphorylation, and AP-1 activation. In THP1 macrophages, CD36, toll-like receptor (TLR)2, TLR4, TLR6, and PKCδ siRNA prevented Ox-LDL-induced PKCδ and IRAK1 activation and IL-1β production. Enhanced Ox-LDL and IL-1β in systemic inflammatory response syndrome (SIRS) patient plasma demonstrated positive correlation with each other and with disease severity scores. Ox-LDL-containing plasma induced PKCδ and IRAK1 phosphorylation and IL-1β production in a CD36-, TLR2-, TLR4-, and TLR6-dependent manner in primary human monocytes. Results suggest involvement of CD36, TLR2, TLR4, TLR6, and the PKCδ-IRAK1-JNK1-AP-1 axis in Ox-LDL-induced IL-1β production. Topics: Acetophenones; Acetylcysteine; Adult; Benzofurans; Benzopyrans; Carbazoles; Female; Humans; Indoles; Interleukin-1 Receptor-Associated Kinases; Interleukin-1beta; Lipoproteins, LDL; Male; Middle Aged; Monocytes; Onium Compounds; Protein Kinase C-delta; Reactive Oxygen Species; Systemic Inflammatory Response Syndrome; THP-1 Cells; Toll-Like Receptors | 2014 |
Salvianolic acid B from Salvia miltiorrhiza inhibits tumor necrosis factor-alpha (TNF-alpha)-induced MMP-2 upregulation in human aortic smooth muscle cells via suppression of NAD(P)H oxidase-derived reactive oxygen species.
Activated matrix metalloproteinases (MMPs) in patients with acute coronary syndromes may contribute to plaque destabilization. Tumor necrosis factor-alpha (TNF-alpha) enhances NAD (P) H oxidase-dependent reactive oxygen species (ROS) formation and ROS induce MMP-2. In the present study, the effects of a potent water-soluble antioxidant, salvianolic acid B (SalB), derived from a Chinese herb, Salvia miltiorrhiza, on the expression of MMP-2 by TNF-alpha-treated human aortic smooth muscle cells (HASMCs) were investigated. In this study, salvianolic acid B scavenged H2O2 in a dose-dependent manner in test tube. We found that SalB, as well as NADPH oxidase inhibitors, DPI or apocynin, and antioxidant NAC, inhibited TNF-alpha-induced MMP-2 mRNA, protein expression, and gelatinolytic activity in HASMCs in a concentration-dependent manner. We also observed a dose-dependent decrease in ROS production and NADPH oxidase activity induced by TNF-alpha in the presence of SalB. SalB also significantly inhibited angiotensin II or H2O2-induced MMP-2 mRNA and protein expression and gelatinolytic activity in HASMCs. Our data point out that the importance of NADPH oxidase-dependent ROS generation in the control of SalB inhibition of TNF-alpha-induced MMP-2 expression and activity. Topics: Acetophenones; Acetylcysteine; Angiotensin II; Aorta; Benzofurans; Cells, Cultured; Humans; Hydrogen Peroxide; Matrix Metalloproteinase 2; Muscle, Smooth, Vascular; NADPH Oxidases; Onium Compounds; Reactive Oxygen Species; Salvia miltiorrhiza; Tumor Necrosis Factor-alpha; Up-Regulation | 2006 |