benzofurans has been researched along with ciproxifan* in 2 studies
2 other study(ies) available for benzofurans and ciproxifan
Article | Year |
---|---|
Modulation of prepulse inhibition and stereotypies in rodents: no evidence for antipsychotic-like properties of histamine H3-receptor inverse agonists.
H(3)-receptor inverse agonists raise a great interest as innovative therapeutics in several central disorders. Whereas their procognitive properties are well established, their antipsychotic-like properties are still debated.. We further explored the effect of maximal doses (3-10 mg/kg) of ciproxifan, BF2.649, and ABT-239, three selective H(3)-receptor inverse agonists, on deficits of prepulse inhibition (PPI) induced by apomorphine, MK-801, and phencyclidine (PCP). Their effect was also investigated on stereotypies induced by apomorphine and methamphetamine.. Ciproxifan, BF2.649, and ABT-239 did not reverse the PPI impairment produced by apomorphine (0.5 mg/kg, subcutaneous) in rats. Ciproxifan and BF2.649 did not reverse the impairment induced in mice by MK-801 (0.3 mg/kg). Ciproxifan and BF2.649 also failed to reverse the disruption induced in mice by PCP (5-10 mg/kg). Low to moderate doses of haloperidol (0.1-0.4 mg/kg, intraperitoneal), alone or co-administered with BF2.649, did not reverse MK-801-induced PPI disruption. A high dose (1 mg/kg) of haloperidol partially reversed the MK-801-induced deficit and BF2.649 tended to increase this effect, although nonsignificantly. Whereas stereotypies induced in mice by apomorphine and methamphetamine were totally suppressed by haloperidol, the decrease induced by ciproxifan was partial against apomorphine and very low, if any, against methamphetamine.. Their total absence of effect in several validated animal models of the disease does not support antipsychotic properties of H(3)-receptor inverse agonists. However, their positive effects previously reported in behavioral tasks addressing learning, attention, and memory maintain the interest of H(3)-receptor inverse agonists for the treatment of cognitive symptoms of schizophrenia as adjunctive medications. Topics: Animals; Antipsychotic Agents; Apomorphine; Benzofurans; Dizocilpine Maleate; Drug Inverse Agonism; Haloperidol; Histamine Antagonists; Imidazoles; Inhibition, Psychological; Male; Methamphetamine; Mice; Phencyclidine; Piperidines; Pyrrolidines; Rats; Rats, Sprague-Dawley; Reflex, Startle; Stereotyped Behavior | 2010 |
Lack of cataleptogenic potentiation with non-imidazole H3 receptor antagonists reveals potential drug-drug interactions between imidazole-based H3 receptor antagonists and antipsychotic drugs.
Since H3 receptor (H3R) antagonists/inverse agonists can improve cognitive function in animal models, they may have the potential to be used as add-on therapy in the treatment of schizophrenia, a disease with significant cognitive deficits. However, a recent study showed potentiation of haloperidol-induced catalepsy by ciproxifan, an imidazole-containing H3R antagonist/inverse agonist, suggesting there is a potential risk of exacerbating extrapyramidal symptoms (EPS) if H3R antagonists were used as adjunctive treatment [Pillot, C., Ortiz, J., Heron, A., Ridray, S., Schwartz, J.C. and Arrang, J.M., Ciproxifan, a histamine H3-receptor antagonist/inverse agonist, potentiates neurochemical and behavioral effects of haloperidol in the rat, J Neurosci, 22 (2002) 7272-80]. In order to clarify the basis of this finding, we replicated this result and extended the work with another imidazole and two non-imidazole H3R antagonists. The results indicate that ciproxifan significantly augmented the effects of haloperidol and risperidone on catalepsy. Another imidazole H3R antagonist, thioperamide, also potentiated the effect of risperidone on catalepsy. In contrast, no catalepsy-enhancing effects were observed when selective non-imidazole H3R antagonists, ABT-239 and A-431404, were coadministered with haloperidol and/or risperidone. As ciproxifan and thioperamide are inhibitors of cytochrome P450 enzymes, responsible for metabolizing risperidone and haloperidol, the possibility that the augmentation of antipsychotics by imidazoles resulted from drug-drug interactions was tested. A drug metabolism study revealed that an imidazole, but not a non-imidazole, potently inhibited the metabolism of haloperidol and risperidone. Furthermore, ketoconazole, an imidazole-based CYP 3A4 inhibitor, significantly augmented risperidone-induced catalepsy. Together, these data suggest the potentiation of antipsychotic-induced catalepsy may result from pharmacokinetic drug-drug interactions and support the potential utility of non-imidazole H3R antagonists in treatment of cognitive impairment in schizophrenia without increased risk of increased EPS in patients. Topics: Animals; Antipsychotic Agents; Benzofurans; Brain Chemistry; Cataplexy; Cytochrome P-450 Enzyme System; Drug Combinations; Drug Synergism; Haloperidol; Histamine; Histamine Antagonists; Imidazoles; Ketoconazole; Male; Metabolic Clearance Rate; Piperidines; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Histamine H3; Risperidone; Schizophrenia | 2005 |