benzofurans has been researched along with 7-methoxyresorufin* in 2 studies
2 other study(ies) available for benzofurans and 7-methoxyresorufin
Article | Year |
---|---|
Sequencing and characterization of mixed function monooxygenase genes CYP1A1 and CYP1A2 of Mink (Mustela vison) to facilitate study of dioxin-like compounds.
As part of an ongoing effort to understand aryl hydrocarbon receptor (AhR) mediated toxicity in mink, cDNAs encoding for CYP1A1 and the CYP1A2 mixed function monooxygenases were cloned and characterized. In addition, the effects of selected dibenzofurans on the expression of these genes and the presence of their respective proteins (P4501A) were investigated, and then correlated with the catalytic activities of these proteins as measured by ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-deethylase (MROD) activities. The predicted protein sequences for CYP1A1 and CYP1A2 comprise 517 and 512 amino acid residues, respectively. The phylogenetic analysis of the mink CYP1As with protein sequences of other mammals revealed high sequence homology with sea otter, seals and the dog, with amino acid identities ranging from 89 to 95% for CYP1A1 and 81 to 93% for CYP1A2. Since exposure to both 2,3,7,8-Tetrachlorodibenzofuran (TCDF) and 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) resulted in dose-dependent increases of CYP1A1 mRNA, CYP1A2 mRNA and CYP1A protein levels an underlying AhR-mediated mechanism is suggested. The up-regulation of CYP1A mRNA in liver was more consistent to the sum adipose TEQ concentration than to the liver TEQ concentration in minks treated with TCDF or PeCDF. The result suggested that the hepatic-sequestered fraction of PeCDF was biologically inactive to the induction of CYP1A1 and CYP1A2. Topics: Animals; Benzofurans; Blotting, Western; Cloning, Molecular; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1A2; Cytochrome P-450 Enzyme System; Dose-Response Relationship, Drug; Environmental Pollutants; Enzyme Induction; Female; Kinetics; Liver; Mink; Oxazines; Phylogeny; Receptors, Aryl Hydrocarbon; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sequence Analysis, DNA; Sequence Analysis, Protein; Sequence Homology, Amino Acid; Substrate Specificity | 2009 |
Methoxyresorufin: an inappropriate substrate for CYP1A2 in the mouse.
Hepatic microsomes derived from Cypla2(-/-) knockout (KO) and parental strains of mice, C57BL/6N and 129Sv, were used to examine the specificity of methoxyresorufin and acetanilide as substrates for CYP1A2 activity. In addition, animals from each group were exposed to CYP1-inducing compounds. As expected, microsomes from untreated 1a2 KO mice did not have immunodetectable CYP1A2 protein; however, methoxyresorufin-O-demethylase (MROD, 25.5+/-6.1 pmol/min/mg protein) and acetanilide-4-hydroxylation (ACOH, 0.64+/-0.04 nmol/min/mg protein) activities were still present. Furthermore, induction of ethoxyresorufin-O-deethylase (EROD) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in 1a2 KO mice was accompanied by a greater than 70-fold increase in MROD activity. In contrast, ACOH was only induced 2-fold by TCDD. As with 1a2 KO mice, the parental strains exposed to TCDD or 2,3,4,7,8-pentachlorodibenzofuran (4-PeCDF) showed substantial EROD and MROD induction, whereas ACOH activity was induced to a lesser degree. PCB153 (2,2',4,4',5,5'-hexachlorobiphenyl) resulted in low levels of both EROD and MROD induction. Results indicate that both substrates are subject to metabolism by non-CYP1A2 sources, and the apparent contribution of CYP1A1 activity to methoxyresorufin metabolism makes MROD unsuitable for differentiating CYP1A1 and CYP1A2 activities in the mouse. Topics: Animals; Aryl Hydrocarbon Hydroxylases; Benzofurans; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1A2; Cytochrome P-450 Enzyme System; Enzyme Induction; Male; Mice; Mice, Inbred Strains; Mice, Knockout; Microsomes, Liver; Oxazines; Oxidoreductases; Polychlorinated Biphenyls; Polychlorinated Dibenzodioxins; Substrate Specificity | 1998 |