benzofurans has been researched along with 3-nitrotyrosine* in 2 studies
2 other study(ies) available for benzofurans and 3-nitrotyrosine
Article | Year |
---|---|
Inhibition of ocular aldose reductase by a new benzofuroxane derivative ameliorates rat endotoxic uveitis.
The study investigated the effects of the aldose reductase (AR) inhibitor benzofuroxane derivative 5(6)-(benzo[d]thiazol-2-ylmethoxy) benzofuroxane (herein referred to as BF-5m) on the biochemical and tissue alterations induced by endotoxic uveitis in rats. BF-5m has been administered directly into the vitreous, in order to assess the expression and levels of (i) inflammatory markers such as the ocular ubiquitin-proteasome system, NF-κB, TNF-α, and MCP-1; (ii) prooxidant and antioxidant markers such as nitrotyrosine, manganese superoxide dismutase (MnSOD), and glutathione peroxidase (GPX); (iii) apoptotic/antiapoptotic factors caspases and Bcl-xl; (iv) markers of endothelial progenitor cells (EPCs) recruitment such as CD34 and CD117. 5 μL of BF-5m (0.01; 0.05; and 0.1 μM) into the right eye decreased in a dose-dependent manner the LPS-induced inflammation of the eye, reporting a clinical score 1. It reduced the ocular levels of ubiquitin, 20S and 26S proteasome subunits, NF-κB subunits, TNF-α, MCP-1, and nitrotyrosine. BF-5m ameliorated LPS-induced decrease in levels of MnSOD and GPX. Antiapoptotic effects were seen from BF-5m by monitoring the expression of Bcl-xl, an antiapoptotic protein. Similarly, BF-5m increased recruitment of the EPCs within the eye, as evidenced by CD34 and CD117 antibodies. Topics: Aldehyde Reductase; Animals; Antioxidants; Apoptosis; Benzofurans; Disease Models, Animal; Enzyme Inhibitors; Eye; Inflammation Mediators; Lipopolysaccharides; Male; Oxidative Stress; Proteasome Endopeptidase Complex; Rats; Rats, Sprague-Dawley; Tyrosine; Ubiquitin; Uveitis | 2014 |
Beneficial effects of raxofelast (IRFI 016), a new hydrophilic vitamin E-like antioxidant, in carrageenan-induced pleurisy.
1. Peroxynitrite is a strong oxidant that results from reaction between NO and superoxide. It has been recently proposed that peroxynitrite plays a pathogenetic role in inflammatory processes. Here we have investigated the therapeutic efficacy of raxofelast, a new hydrophilic vitamin E-like antioxidant agent, in rats subjected to carrageenan-induced pleurisy. 2. In vivo treatment with raxofelast (5, 10, 20 mg kg(-1) intraperitoneally 5 min before carrageenan) prevented in a dose dependent manner carrageenan-induced pleural exudation and polymorphonuclear migration in rats subjected to carrageenan-induced pleurisy. Lung myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels, as well as histological organ injury were significantly reduced by raxofelast. 3. Immunohistochemical analysis for nitrotyrosine, a footprint of peroxynitrite, revealed a positive staining in lungs from carrageenan-treated rats. No positive nitrotyrosine staining was found in the lungs of the carrageenan-treated rats, which received raxofelast (20 mg kg 1) treatment. 4. Furthermore, in vivo raxofelast (5, 10, 20 mg kg(-1)) treatment significantly reduced peroxynitrite formation as measured by the oxidation of the fluorescent dihydrorhodamine 123, prevented the appearance of DNA damage, the decrease in mitochondrial respiration and partially restored the cellular level of NAD+ in ex vivo macrophages harvested from the pleural cavity of rats subjected to carrageenan-induced pleurisy. 5. In conclusion, our study demonstrates that raxofelast, a new hydrophilic vitamin E-like antioxidant agent, exerts multiple protective effects in carrageenan-induced acute inflammation. Topics: Animals; Antioxidants; Benzofurans; Carrageenan; Cell Respiration; Energy Metabolism; Excipients; Immunohistochemistry; Lung; Macrophages, Alveolar; Malondialdehyde; Peroxidase; Pleurisy; Rats; Tyrosine; Vitamin E | 1999 |