benzofurans has been researched along with 2-chlorophenol* in 19 studies
19 other study(ies) available for benzofurans and 2-chlorophenol
Article | Year |
---|---|
Theoretical study on the formation mechanism of pre-intermediates for PXDD/Fs from 2-Bromophenol and 2-Chlorophenol precursors via radical/molecule reactions.
This study investigates reaction pathways for the formation of pre-PXDD/F intermediates via a radical/molecule mechanism. Thermodynamic and kinetic parameters for the combination reactions of 2-bromophenol (2-BP) and 2-chlorophenol (2-CP) precursors with key radical species including the phenoxy radicals, the phenyl radicals and the phenoxyl diradicals were calculated in detail. The couplings of phenoxy radicals with 2-B(C)P tend to produce pre-PXDD intermediates of halogenated o-phenoxyphenol. The combinations of phenyl and phenoxyl diradicals with 2-B(C)P produce two types of structures, i.e., dihydroxybiphenyl and o-phenoxyphenyl, which exclusively act as prestructures of PXDFs. These condensation reactions, especially those involving the phenyl C atom sites in phenyl and phenoxyl diradicals, are proven to be both thermodynamically and kinetically favorable and are nearly comparable with the corresponding steps involved in the radical/radical reactions. Most importantly, reactions of phenyl and phenoxyl diradicals with halogenated phenols solely lead to the formation of PXDFs, which to some extent provides a plausible explanation for the high PXDF-to-PXDD ratios in the real environment. Therefore, our study reveals the pivotal role of the radical/molecule mechanism in homogeneous gas-phase PXDD/F formation, especially in PXDF formation. The present results fill in a knowledge gap that has hitherto existed regarding dioxin formation and improve our understanding of PXDD/F formation characteristics in the environment. Topics: Benzofurans; Chlorophenols; Dibenzofurans; Dioxins; Halogenation; Kinetics; Models, Chemical; Models, Theoretical; Phenols; Polychlorinated Dibenzodioxins; Thermodynamics | 2017 |
Contribution of aluminas and aluminosilicates to the formation of PCDD/Fs on fly ashes.
Chlorinated aromatics undergo surface-mediated reactions with metal oxides to form Environmentally Persistent Free Radicals (EPFRs) which can further react to produce polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Previous work using laboratory-made fly ash surrogates composed of transition metal oxides deposited on silica powder has confirmed their ability to mimic fly ash in the production of PCDD/Fs. However, little is known about the propensity of aluminas and aluminosilicates, other components of fly ash, to form PCDD/Fs. A fly ash sample containing both alumina and mullite, an aluminosilicate, was tested for PCDD/F formation ability and compared to PCDD/F yields from the thermal degradation of 2-monochlorophenol (2-MCP) precursor over γ-alumina, α-alumina, and mullite. A packed-bed flow reactor was used to investigate the thermal degradation of 2-MCP over the various catalysts at 200-600 °C. Fly ash gave similar PCDD/F yields to surrogates made with similar transition metal content. γ-alumina, which is thermodynamically unfavorable, was very catalytically active and gave low PCDD/F yields despite a high destruction of 2-MCP. Mullite and α-alumina, the thermodynamically favorable form of alumina, yielded higher concentrations of dioxins and products with a higher degree of chlorine substitution than γ-alumina. The data suggest that certain aluminas and aluminosilicates, commonly found in fly ash, are active catalytic surfaces in the formation of PCDD/Fs in the post-flame cool zones of combustion systems and should be considered as additional catalytic surfaces active in the process. Topics: Air Pollutants; Aluminum Oxide; Aluminum Silicates; Benzofurans; Chlorophenols; Coal Ash; Dibenzofurans, Polychlorinated; Dioxins; Environmental Monitoring | 2016 |
Formation of PCDD/Fs in Oxidation of 2-Chlorophenol on Neat Silica Surface.
This contribution studies partial oxidation of 2-chlorophenol on surfaces of neat silica at temperatures of 250, 350, and 400 °C; i.e., temperatures that frequently lead to catalytic formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) from their precursors. We have identified 2,6-dichlorophenol (2,6-DCPh), 2,4-dichlorophenol (2,4-DCPh), and 2,4,6-trichlorophenol (2,4,6-TriCPh), but have detected no chlorinated benzenes (CBzs). The detected chlorinated and nonchlorinated DD/Fs comprise dibenzo-p-dioxin (DD), 1- and 2-monochlorodibenzo-p-dioxin (1-, 2-MCDD), 1,6-, 1,9-, 1,3-dichlorodibenzo-p-dioxin (1,6-, 1,9-, 1,3-DCDD), 4-monochlorodibenzofuran (4-MCDF), and 4,6-dichlorodibenzofuran (4,6-DCDF) at the reaction temperatures of 350 and 400 °C. However, at a lower reaction temperature, 250 °C, we have detected no PCDD/Fs. We have demonstrated that neat silica surfaces catalyze the generation of PCDD/Fs from chlorophenols at the upper range of the catalytic formation temperature of PCDD/F. The present finding proves the generation of PCDD/Fs on particles of fly ash, even in the absence of transition metals. Topics: Benzofurans; Chlorophenols; Coal Ash; Dibenzofurans, Polychlorinated; Dioxins; Halogenation; Incineration; Oxidation-Reduction; Phenols; Silicon Dioxide; Temperature | 2016 |
Theoretical and experimental formation of low chlorinated dibenzo-p-dioxins and dibenzofurans in the Fenton oxidation of chlorophenol solutions.
The formation of chlorinated and non-chlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) has been experimentally investigated after the Fenton oxidation of 2-chlorophenol (2-CP, 15.56 mM) aqueous solutions by assessing the influence of iron concentration (0.09-2.88 mM), hydrogen peroxide dose (40.44-202.20 mM), temperature (20-70 °C) and chloride concentration (0-56.35 mM). The presence of chloride in the medium together with room temperature and substoichiometric Fenton conditions (40.44 mM H2O2) led to an increase in total PCDD/Fs concentration from less than 1 ng L(-1) to 2 μg L(-1). Results showed a dominance of the dichlorinated species (DCDD/Fs) in the homologue profile of total PCDD/Fs reaching values up to 1.5 μg L(-1). Furthermore, the products distribution exhibited a gradual decrease in the homologue concentration as the chlorination degree increased from di-to octachloro-substituted positions. Considering the characteristics of the reaction medium, the experimental results, and the information gathered in bibliography with regard to the generation of active radicals from 2-chlorophenol, a mechanism describing the formation of low chlorinated PCDD/Fs in a Fenton oxidizing aqueous system has been proposed. Topics: Benzofurans; Chlorophenols; Dibenzofurans, Polychlorinated; Halogenation; Hydrogen Peroxide; Iron; Models, Chemical; Oxidation-Reduction; Polychlorinated Dibenzodioxins; Solutions; Temperature | 2016 |
Assessment of PCDD/Fs formation in the Fenton oxidation of 2-chlorophenol: Influence of the iron dose applied.
Toxic polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) may be formed during remediation of chlorinated phenols via Fenton oxidation. To highlight the need for monitoring the production of toxic byproducts in these reactions, this work assessed the influence of iron dose (0.09-0.36 mM) on the Fenton oxidation of 2-chlorophenol (2-CP, 15.56 mM), a potential precursor of PCDD/Fs, by quantifying 2-CP removal and mineralization rates as well as byproducts yields, including PCDD/Fs. Although the increase in the iron dose showed positive contribution to 2-CP oxidation, under the operating conditions of the current study (H2O2 at 20% of the stoichiometric dose and 20 °C), there was no effect on the mineralization rate, and TOC and chlorine balances were far to be closed, depicting the presence of chlorinated organic byproducts in the reaction medium. After 4 h of treatment, the total PCDD/Fs concentrations increased by 14.5-39 times related to the untreated sample when the iron doses tested decreased from 0.36 to 0.09 mM, with preferential formation of PCDFs over PCDDs and dominance of lower chlorinated congeners such as tetra and penta-PCDD/Fs. The treatment with the highest iron dose (0.36 mM) exhibited the lowest PCDD/Fs yields and was thus most successful at mitigating toxic byproducts of the Fenton oxidation, leading to lower sample toxic equivalence (TEQ) value. Topics: Benzofurans; Chlorophenols; Dibenzofurans, Polychlorinated; Hydrogen Peroxide; Iron; Oxidation-Reduction; Polychlorinated Dibenzodioxins; Wastewater; Water Pollutants, Chemical; Water Purification | 2015 |
The critical role of the operating conditions on the Fenton oxidation of 2-chlorophenol: assessment of PCDD/Fs formation.
This work assesses the influence of the operating conditions H2O2 dose (20 or 100% of the stoichiometric amount), temperature (20 or 70°C), and the presence of chloride in the oxidation medium in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) during Fenton treatment of aqueous samples of 2-chlorophenol, 2-CP, one of the strongest precursor of PCDD/Fs. After 4h of oxidation in the experiments carried out with 20% H2O2 chlorinated phenoxyphenols and biphenyls, which are intermediates in PCDD/Fs formation, as well as PCDD/Fs were observed, resulting in concentrations 11 times higher than in the untreated sample. Additionally, when NaCl was also present in the reaction medium, PCDD/Fs were formed at higher extent, with a total concentration 74.4 times higher than in the untreated 2-CP solution. Results depicted a preferential formation of PCDFs over PCDDs, with dominance of lower chlorinated PCDD/Fs (tetra and penta-PCDD/Fs). Besides, the formation of the most toxic PCDD/Fs congeners (2,3,7,8-PCDD/Fs) was not favored under the operating conditions used in this work. Topics: Benzofurans; Chlorides; Chlorophenols; Hydrogen Peroxide; Iron; Oxidation-Reduction; Polychlorinated Dibenzodioxins; Temperature | 2014 |
PCDD/PCDF ratio in the precursor formation model over CuO surface.
The discrepancies between polychlorinated dibenzo-p-dioxin to polychlorinated dibenzofuran (PCDD to PCDF) ratios in laboratory and field studies in the exhaust of combustion sources are not fully explained by available formation models. In this paper we present the results of experimental studies of the surface mediated formation of PCDD/F at the conditions mimicking the combustion cool zone from a mixture of 1,2-dichlorobenzene (1,2-DCBz) and 2-monochlorophenol (2-MCP) over a model surface consisting of 5% CuO/Silica. The PCDD to PCDF ratio was found to be strongly dependent on the ratio of chlorinated benzenes to chlorinated phenols and oxygen content. The higher the 1,2-DCBz to 2-MCP ratio, the lower the PCDD to PCDF ratio. PCDFs are formed predominantly from chlorinated benzenes, while chlorinated phenols are responsible for majority of PCDDs. These laboratory results are in general agreement with full-scale measurement and can be used to improve predictive models of PCDD/F formation. Topics: Benzofurans; Chlorobenzenes; Chlorophenols; Copper; Dibenzofurans, Polychlorinated; Halogenation; Polychlorinated Dibenzodioxins; Silicon Dioxide | 2014 |
New insight into the formation mechanism of PCDD/Fs from 2-chlorophenol precursor.
Chlorophenols are known as precursors of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). The widely accepted formation mechanism of PCDD/Fs always assumes chlorophenoxy radicals as key and important intermediates. Based on the results of density functional theory calculations, the present work reports new insight into the formation mechanism of PCDD/Fs from chlorophenol precursors. Using 2-chlorophenol as a model compound of chlorophenols, we find that apart from the chlorinated phenoxy radical, the chlorinated phenyl radical and the chlorinated α-ketocarbene also have great potential for PCDD/F formation, which has scarcely been considered in previous literature. The calculations on the self- and cross-coupling reactions of the chlorophenoxy radical, the chlorinated phenyl radical and the chlorinated α-ketocarbene show that the formations of 1-MCDD, 1,6-DCDD, 4,6-DCDF, and 4-MCDF are both thermodynamically and kinetically favorable. In particular, some pathways involving the chlorinated phenyl radicals and the chlorinated α-ketocarbene are even energetically more favorable than those involving the chlorophenoxy radical. The calculated results may improve our understanding for the formation mechanism of PCDD/Fs from chlorophenol precursors and be informative to environmental scientists. Topics: Benzofurans; Chlorophenols; Polychlorinated Dibenzodioxins; Polymers | 2013 |
Quantitative assessment of the formation of polychlorinated derivatives, PCDD/Fs, in the electrochemical oxidation of 2-chlorophenol as function of the electrolyte type.
The electrochemical degradation of 2-chlorophenol (2-CP) on boron-doped diamond (BDD) anodes was carried out using two electrolytes, NaCl and Na2SO4. Both electrolytes supported complete mineralization of 2-CP, but faster rates of degradation were observed in NaCl. After 4 h of oxidation, the total organic carbon (TOC) balance neared 100% with Na2SO4 for identifiable compounds, whereas 4 mM of TOC remained unidentified with NaCl. Since chlorophenols are known to be precursors of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), a rigorous assessment of intermediate products was carried out. When near complete mineralization was achieved, the use of NaCl resulted in the concentration of total PCDD/Fs increasing 2.68 × 10(4) times compared to the untreated sample, and to toxicity values several times higher than the maximum level established by U.S. Environmental Protection Agency for water ingestion. When Na2SO4 was used, the increase in total PCDD/Fs concentration was 134 times lower than with NaCl and there was no significant 2,3,7,8-PCDD/Fs formation. Thus, we emphasize the importance of electrolyte selection in electro-oxidation processes, especially when PCDD/Fs precursors are initially present or may be formed in the treated water samples. Topics: Benzofurans; Chlorophenols; Electrochemistry; Electrolytes; Kinetics; Oxidation-Reduction; Polychlorinated Dibenzodioxins; Sodium Chloride; Solutions; Sulfates | 2013 |
Theoretical study of the reactions of 2-chlorophenol over the dehydrated and hydroxylated silica clusters.
Silica is the main component of combustion-generated fly ash and is expected to have an important impact on the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in municipal waste incinerators. In this work, we theoretically studied the reactions of 2-chlorinated phenol (2-CP) over the clusters (SiO(2))(3) and (SiO(2))(3)O(2)H(4), which mimic the dehydrated and hydroxylated silica structures, respectively. The dehydrated cluster is much more active toward the attack of 2-CP to form highly stable 2-chlorophenolate than the hydroxylated silica cluster. The further dissociation of chlorophenolates to form CP radicals (CPRs) is calculated to be very difficult. The calculated energy barrier of the reaction of 2-CP over the dehydrated (SiO(2))(3) cluster and IR data are in good agreement with early experimental observations. On the basis of the calculated results, we propose that the formation of PCDD/Fs from CPs over silica surfaces may not involve CPRs, but be relevant to the further conversion of chlorophenolates over silica surfaces. This mechanism is very different from the corresponding reactions mediated by transition metal oxides. The results presented here may be helpful to understand the chemisorption mechanism of CPs on silica surfaces in real waste combustion. Topics: Benzofurans; Chlorophenols; Coal Ash; Dibenzofurans, Polychlorinated; Environmental Pollutants; Incineration; Models, Molecular; Models, Theoretical; Polychlorinated Dibenzodioxins; Quantum Theory; Silicon Dioxide; Thermodynamics; Water | 2012 |
Formation of PCDD/Fs from oxidation of 2-monochlorophenol over an Fe2O3/silica surface.
The role of iron in surface-mediated formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from 2-chlorophenol (2-MCP) was investigated over the temperature range of 200-550°C under oxidative conditions. In order to compare and contrast with previous work on copper and ferric oxide-mediated pyrolysis of 2-MCP, identical reaction conditions were maintained (50 ppm 2-MCP, model fly-ash particles containing 5% Fe(2)O(3) on silica). Observed products included dibenzo-p-dioxin (DD), 1-monochlorodibenzo-p-dioxin (1-MCDD), dibenzofuran (DF), 4,6-dichlorodibenzofuran (4,6-DCDF), 2,4- and 2,6-dichlorophenol, 2,4,6-trichlorophenol, quinone, catechol, chloro-o-quinone, chlorocatechol and polychlorinated benzenes. Yields of DD and 1-MCDD were 2 and 5 times higher than under pyolysis conditions, respectively. Although 4,6-DCDF was the major PCDD/F product formed with a yield that was 2.5× greater than under pyrolysis, the yield of non-chlorinated DF, which was the dominant PCDD/F product under pyrolysis, decreased by a factor of 3. Furthermore, the ~2× higher yield of PCDDs under oxidative conditions resulted in a PCDD to PCDF ratio of 0.75 compared to a relatively low ratio of 0.39 previously observed under pyrolytic conditions. Topics: Benzofurans; Chlorophenols; Dibenzofurans, Polychlorinated; Ferric Compounds; Hot Temperature; Oxidation-Reduction; Polychlorinated Dibenzodioxins; Silicon Dioxide; Surface Properties | 2012 |
Hydroxyterphenylphoshine-palladium catalyst for benzo[b]furan synthesis from 2-chlorophenols. bifunctional ligand strategy for cross-coupling of chloroarenes.
A catalyst composed of Pd and hydroxyterphenylphosphine was found to be effective for one-pot benzo[b]furan synthesis from 2-chlorophenols and alkynes. Topics: Benzofurans; Catalysis; Chlorophenols; Magnetic Resonance Spectroscopy; Palladium | 2010 |
Formation of chlorinated biphenyls, diphenyl ethers and benzofurans as a result of Fenton-driven oxidation of 2-chlorophenol.
Homogeneous catalytic Fenton oxidation proved to be very efficient in the degradation of high concentrations (3.9 mM) of 2-chlorophenol (2-CP) in aqueous matrices. When using [H(2)O(2)](0)/[2-CP](0) substoichiometric molar ratios of 4 and 16, the detected aromatic intermediates included mainly chlorinated benzenediols, with the virtual absence of condensation products of higher molecular weight. At even lower substoichiometric ratios of [H(2)O(2)](0)/[2-CP](0) (< or =2.2), hydroxylated chlorobiphenyls, hydroxylated chlorodiphenyl ethers and hydroxylated chlorinated dibenzofurans were formed in addition to chlorinated benzenediols. The aromatic intermediates were identified as trimethylsilyl ethers and dimethyl-t-butyl silyl ethers. A reaction scheme was proposed to describe the formation of aromatic intermediates based on coupling reactions of resonance-stabilized 2-CP radicals generated by electrophilic attack of reactive hydroxyl radicals. The pattern of aromatic intermediates identified in the Fenton solutions coincided well with that predicted on the basis of oxidative coupling reactions. In addition to coupling of stabilized radicals, aromatic intermediates can be formed by addition of organoradicals onto neutral analyte molecules. The findings presented in this contribution are considered crucial for the design and optimization of Fenton-based remediation devoted either to wastewater treatment under economically feasible conditions or to in situ groundwater treatment where poorly controlled reaction conditions prevail. Topics: Benzofurans; Chlorophenols; Hydrogen Peroxide; Oxidation-Reduction; Phenyl Ethers; Polychlorinated Biphenyls | 2009 |
Quantum chemical and kinetic study of formation of 2-chlorophenoxy radical from 2-chlorophenol: unimolecular decomposition and bimolecular reactions with H, OH, Cl, and O2.
This study investigates the kinetic parameters of the formation of the chlorophenoxy radical from the 2-chlorophenol molecule, a key precursor to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCCD/F), in unimolecular and bimolecular reactions in the gas phase. The study develops the reaction potential energy surface for the unimolecular decomposition of 2-chlorophenol. The migration of the phenolic hydrogen to the ortho-C bearing the hydrogen atom produces 2-chlorocyclohexa-2,4-dienone through an activation barrier of 73.6 kcal/mol (0 K). This route holds more importance than the direct fission of Cl or the phenolic H. Reaction rate constants for the bimolecular reactions, 2-chlorophenol + X --> X-H + 2-chlorophenoxy (X = H, OH, Cl, O2) are calculated and compared with the available experimental kinetics for the analogous reactions of X with phenol. OH reaction with 2-chlorophenol produces 2-chlorophenoxy by direct abstraction rather than through addition and subsequent water elimination. The results of the present study will find applications in the construction of detailed kinetic models describing the formation of PCDD/F in the gas phase. Topics: Benzofurans; Chlorine; Chlorophenols; Free Radicals; Gases; Hydrogen; Hydroxides; Kinetics; Oxygen; Phenols; Polychlorinated Dibenzodioxins; Quantum Theory | 2008 |
Thermal degradation of 2-chlorophenol promoted by CuCl2 or CuCl: formation and destruction of PCDD/Fs.
The oxidative degradation of 2-chlorophenol in air (equivalence ratio phi=0.8) was investigated at 350 degrees C by using the sealed tube technique under different conditions: in the gas phase and in the presence of copper chlorides (CuCl2 and CuCl in different proportions). Not only PCDD/Fs but carbon oxides and other organic products such as chlorophenols, chlorobenzenes, tetrachloroethylene and tetrachlorocyclopentenedione were quantified in order to evaluate the relative importance of reaction pathways. Additional experiments were performed to analyse the degradation products of octachlorodibenzodioxin and 2-monochlorodibenzodioxin. Although it was stated that chlorobenzenes could be formation precursors for PCDD/Fs, experimental data obtained in this work show that chlorobenzenes can also be degradation products of PCDD/Fs. Topics: Air Pollutants; Benzofurans; Chlorobenzenes; Chlorophenols; Copper; Incineration; Oxidation-Reduction; Polychlorinated Dibenzodioxins; Time Factors | 2007 |
An expanded reaction kinetic model of the CuO surface-mediated formation of PCDD/F from pyrolysis of 2-chlorophenol.
An expanded reaction kinetic model, including 17 surface reactions, is proposed to explain the yields of PCDD/F obtained in an experimental study of the reaction of 2-chlorophenol over a CuO/silica surface. The mechanism is loosely based on the gas-phase mechanism for PCDD/F formation widely discussed in the literature. The principal differences are the impact of chemisorption of 2-chlorophenols to metal oxides on radical formation and the steric hindrance of oxygen-centered radicals on the surface inhibiting radical-radical reaction pathways that lead to formation of dibenzo-p-dioxin (DD). Gas-phase molecule-surface-bound adsorbate reactions are the preferred route of DD formation, while radical-radical surface reactions are the main channel for dichloro-dibenzofuran (DCDF) formation. These results suggest that the Langmuir-Hinshelwood (LH) mechanism, involving radical-radical surface reactions, and the Eley-Rideal mechanism, involving a gas-phase molecule and surface-bound adsorbate, are responsible for PCDF and PCDD formation on surfaces, respectively. The calculated yields of DCDF and DD are in reasonable agreement with experimental results. Topics: Benzofurans; Catalysis; Chlorophenols; Computer Simulation; Copper; Dibenzofurans, Polychlorinated; Kinetics; Models, Chemical; Molecular Structure; Polychlorinated Dibenzodioxins; Refuse Disposal | 2007 |
Formation of bromochlorodibenzo-p-dioxins and dibenzofurans from the high-temperature oxidation of a mixture of 2-chlorophenol and 2-bromophenol.
The homogeneous, gas-phase oxidative thermal degradation of a 50:50 mixture of 2-bromophenol and 2-chlorophenol was studied in a 1 cm i.d., fused silica flow reactor at a concentration of 88 ppm, with a reaction time of 2.0 s, over a temperature range of 300 to 1000 degrees C. Observed products in order of decreasing yield included the following: dibenzo-p-dioxin (DD), 4-bromo-6-chlorodibenzofuran (4-B,6-CDF), phenol, 4,6-dibromodibenzofuran (4,6-DBDF), 2,6-dibromophenol, 4,6-dichlorodibenzofuran (4,6-DCDF), 2-bromo-4-chlorophenol, 2,4-dibromophenol, 2-chloro-4-bromophenol, 4-monobromodibenzofuran (4-MBDF), 4-monochlorodibenzofuran (4-MCDF), dibenzofuran (DF), 1-monobromodibenzo-p-dioxin (1-MBDD), 1-monochlorodibenzo-p-dioxin (1-MCDD), 2,4,6-tribromophenol, naphthalene, chloronaphthalene, bromonaphthalene, chlorobenzene, bromobenzene, and benzene. The results are compared and contrasted with previous results reported for the oxidations of pure 2-chlorophenol and 2-bromophenol as well as results for the pyrolysis of the mixture of 2-chlorophenol and 2-bromophenol. 4,6-DBDF and 4,6-DCDF were observed in higher yields than under pyrolytic conditions but considerably less than the yields observed for the individual oxidation of 2-chlorophenol and 2-bromophenol. The effect on chlorine and bromine on the concentration of hydroxyl radical is shown to control the dioxin-to-furan ratio. Topics: Benzofurans; Chlorophenols; Dioxins; Environment; Gases; Hydroxyl Radical; Models, Chemical; Naphthalenes; Oxygen; Phenols; Polychlorinated Dibenzodioxins; Temperature | 2006 |
Formation of bromochlorodibenzo-p-dioxins and furans from the high-temperature pyrolysis of a 2-chlorophenol/2-bromophenol mixture.
The homogeneous, gas-phase pyrolytic thermal degradation of a 50:50 mixture of 2-bromophenol and 2-chlorophenol was studied in a 1 cm i.d., fused silica flow reactor at a total concentration of 88 ppm, reaction time of 2.0 s, and temperatures from 300 to 1000 degrees C. Observed products included (in decreasing yield) naphthalene, dibenzo-p-dioxin (DD), phenol, dibenzofuran (DF), bromobenzene, chloronaphthalene, 4-bromo-6-chlorodibenzofuran (4-B,6-CDF), bromonaphthalene, benzene, 4,6-dichlorodibenzofuran (4,6-DCDF), chlorobenzene, 4-monobromodibenzofuran (4-MBDF), 4-monochlorodibenzofuran (4-MCDF), 1-mono-bromodibenzo-p-dioxin (1-MBDD), 2-chloro,4-bromophenol, 2,4-dibromophenol, and 2-bromo-4-chlorophenol. Unlike the case for the pyrolysis of pure 2-chlorophenol, 4,6-DCDF was observed, but the analogous 4,6-DBDF remained undetected similar to the individual results with 2-MBP. This indicates that the presence of bromine increases the concentration of chlorine atoms available for the formation of 4,6-DCDF. Due to bromine atoms acting as better leaving groups than chlorine atoms, the yield of DD was increased over that observed for the pyrolysis of 2-chlorophenol. The addition of bromine to a chlorinated hydrocarbon system results in an increase in the total yield of PCDD/Fs as well as PBDD/Fs and mixed PBCDD/Fs due to the ease of bromine elimination reactions as well as an increase of the chlorine atom concentration. Topics: Benzofurans; Chlorophenols; Dioxins; Hot Temperature; Hydrocarbons, Brominated; Kinetics; Models, Chemical; Phenols | 2005 |
X-ray spectroscopic studies of the high temperature reduction of Cu(II)O by 2-chlorophenol on a simulated fly ash surface.
The reaction of 2-chlorophenol on Cu(II)O at 375 degrees C is studied using X-ray absorption near edge structure (XANES) spectroscopy. A mixture of copper(II) oxide and silica is prepared to serve as a surrogate for fly ash in combustion systems. 2-Chlorophenol is utilized as a model precursor for formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F). The Cu K-edge spectra shiftto lower binding energy, reflecting the reduction of the copper. The substrate is found to form a mixture of Cu(II), Cu(I), and Cu(O), with the dominant species being Cu(I). The data are fitted well with a first-order reaction scheme, with a time constant at 375 degrees C of 76 s. This is the first application of XANES spectroscopy for studying the kinetics and mechanism of heterogeneous reactions relevant to combustion processes, and the results demonstrate the utility and desirability of such X-ray spectroscopic studies. Topics: Air Pollutants; Benzofurans; Chlorophenols; Copper; Dibenzofurans, Polychlorinated; Kinetics; Oxidation-Reduction; Polychlorinated Dibenzodioxins; Soil Pollutants; Spectrum Analysis; Temperature | 2003 |