bemesetron has been researched along with 1-(2-methoxyphenyl)-4-(4-(2-phthalimido)butyl)piperazine* in 5 studies
5 other study(ies) available for bemesetron and 1-(2-methoxyphenyl)-4-(4-(2-phthalimido)butyl)piperazine
Article | Year |
---|---|
Serotonergic mechanism of the relieving effect of bee venom acupuncture on oxaliplatin-induced neuropathic cold allodynia in rats.
Oxaliplatin, an important chemotherapy drug for advanced colorectal cancer, often induces peripheral neuropathy, especially cold allodynia. Our previous study showed that bee venom acupuncture (BVA), which has been traditionally used in Korea to treat various pain symptoms, potently relieves oxaliplatin-induced cold allodynia in rats. However, the mechanism for this anti-allodynic effect of BVA remains poorly understood. We investigated whether and how the central serotonergic system, a well-known pathway for acupuncture analgesia, mediates the relieving effect of BVA on cold allodynia in oxaliplatin-injected rats.. The behavioral signs of cold allodynia in Sprague-Dawley (SD) rats were induced by a single injection of oxaliplatin (6 mg/kg, i.p.). Before and after BVA treatment, the cold allodynia signs were evaluated by immersing the rat's tail into cold water (4°C) and measuring the withdrawal latency. For BVA treatment, a diluted BV (0.25 mg/kg) was subcutaneously administered into Yaoyangguan (GV3) acupoint, which is located between the spinous processes of the fourth and the fifth lumbar vertebra. Serotonin was depleted by a daily injection of DL-p-chlorophenylalanine (PCPA, 150 mg/kg, i.p.) for 3 days. The amount of serotonin in the spinal cord was measured by ELISA. Serotonergic receptor antagonists were administered intraperitoneally or intrathecally before BVA treatment.. The serotonin levels in the spinal cord were significantly increased by BVA treatment and such increase was significantly reduced by PCPA. This PCPA pretreatment abolished the relieving effect of BVA on oxaliplatin-induced cold allodynia. Either of methysergide (mixed 5-HT1/5-HT2 receptor antagonist, 1 mg/kg, i.p.) or MDL-72222 (5-HT3 receptor antagonist, 1 mg/kg, i.p) blocked the anti-allodynic effect of BVA. Further, an intrathecal injection of MDL-72222 (12 μg) completely blocked the BVA-induced anti-allodynic action, whereas NAN-190 (5-HT1A receptor antagonist, 15 μg, i.t.) or ketanserin (5-HT2A receptor antagonist, 30 μg, i.t.) did not.. These results suggest that BVA treatment alleviates oxaliplatin-induced acute cold allodynia in rats via activation of the serotonergic system, especially spinal 5-HT3 receptors. Thus, our findings may provide a clinically useful evidence for the application of BVA as an alternative therapeutic option for the management of peripheral neuropathy, a dose-limiting side effect that occurs after an administration of oxaliplatin. Topics: Acupuncture Analgesia; Acupuncture Points; Animals; Apitherapy; Bee Venoms; Cold Temperature; Fenclonine; Hyperalgesia; Ketanserin; Male; Neuralgia; Organoplatinum Compounds; Oxaliplatin; Peripheral Nervous System Diseases; Piperazines; Rats; Rats, Sprague-Dawley; Receptors, Serotonin; Serotonin; Serotonin 5-HT3 Receptor Agonists; Serotonin Antagonists; Spinal Cord; Tropanes | 2014 |
Antinociceptive effect of shakuyakukanzoto, a Kampo medicine, in diabetic mice.
In this study, the antinociceptive effect of shakuyakukanzoto was investigated using streptozotocin-induced diabetic mice to certify its analgesic effect on diabetic patients. Shakuyakukanzoto (0.5 and 1.0 g/kg, p.o.) significantly increased the nociceptive threshold in diabetic mice. The antinociceptive activity of shakuyakukanzoto in diabetic mice was not antagonized by beta-funaltrexamine, naltrindole, or nor-binaltorphimine. The increased antinociceptive activity of (1.0 g/kg, p.o.) in diabetic mice was abolished by yohimbine (15 microg, i.t.), but not by NAN-190 (1 microg, i.t.), methysergide (15 microg, i.t.), or MDL-72222 (15 microg, i.t.). In shakuyakukanzoto diabetic mice treated with 6-hydroxydopamine (20 microg, i.t.) chemically lesioned noradrenergic pathways, shakuyakukanzoto (1.0 g/kg, p.o.) failed to exhibit an antinociceptive effect. Furthermore, the antinociceptive activity induced by norepinephrine (0.06 - 2 microg, i.t.) was markedly more potent in diabetic mice than in non-diabetic mice at the same dose. These results suggest that the antinociceptive effect of shakuyakukanzoto in diabetic mice is not mediated by the opioid systems and that this effect appears via selective activation of the spinal descending inhibitory alpha2-adrenergic systems without activating the serotonergic systems. The spinal alpha2-adrenoceptor-mediated analgesic mechanism was enhanced in diabetic mice, suggesting that shakuyakukanzoto exhibits its effect by activating the descending noradrenergic neurons. Topics: Adrenergic alpha-Antagonists; Analgesics; Animals; Diabetes Mellitus, Experimental; Dose-Response Relationship, Drug; Drug Combinations; Drugs, Chinese Herbal; Glycyrrhiza; Male; Medicine, Kampo; Methysergide; Mice; Naltrexone; Narcotic Antagonists; Oxidopamine; Paeonia; Pain Measurement; Pain Threshold; Piperazines; Serotonin Antagonists; Sympatholytics; Tropanes; Yohimbine | 2005 |
The serotonin 5-HT2 receptor-phospholipase C system inhibits the induction of long-term potentiation in the rat visual cortex.
The effect of serotonin 5-HT2 receptor stimulation on long-term potentiation (LTP) in the primary visual cortex was investigated by using rat brain slices in vitro. Field potentials evoked by stimulation of layer IV were recorded in layer II/III. The 5-HT2 receptor agonist 1-(2,5-dimethyl-4-iodophenyl)-2-aminopropane (DOI) did not affect baseline synaptic potentials evoked by single-pulse test stimulation, but significantly inhibited the induction of LTP in a concentration-dependent manner (0.1-10 microM). The LTP-inhibiting effect of DOI (10 microM) was blocked by the 5-HT2,7 receptor antagonist ritanserin (10 microM), but not by the 5-HT1A receptor antagonist NAN-190 (10 microM) nor by the 5-HT3,4 receptor antagonist MDL72222 (10 microM). The inhibitory effect of DOI was also blocked by the phospholipase C inhibitor U73122, but not by its inactive analogue U73343. These results suggest that visual cortex LTP is inhibited by activation of the 5-HT2 receptor-phospholipase C system. In addition, the LTP-inhibiting effect of DOI was abolished by the presence of the GABAA receptor antagonist bicuculline (10 microM), suggesting that 5-HT2 receptor-mediated inhibition of visual cortex LTP is dependent on GABAergic inhibition. Topics: 8-Hydroxy-2-(di-n-propylamino)tetralin; Amphetamines; Animals; Bicuculline; Electrophysiology; Estrenes; GABA Antagonists; gamma-Aminobutyric Acid; In Vitro Techniques; Long-Term Potentiation; Male; Phosphodiesterase Inhibitors; Piperazines; Pyrrolidinones; Rats; Rats, Wistar; Receptors, GABA-A; Receptors, Serotonin; Ritanserin; Serotonin Antagonists; Serotonin Receptor Agonists; Tropanes; Type C Phospholipases; Visual Cortex | 2000 |
Stereochemistry of serotonin receptor ligands from crystallographic data. Crystal structures of NAN-190.HBr, 1-phenylbiguanide, MDL 72222 and mianserin.HCl and selectivity criteria towards 5-HT1, 5-HT2, and 5-HT3 receptor subtypes.
The crystal and molecular structures of the following serotoninergic drugs have been determined: (1) 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl]piperazine hydrobromide hemihydrate (NAN-190.HBr), C23H28N3O3+.Br-.1/2H2O, M(r) = 483.42, monoclinic, C2/c, a = 21.916 (4), b = 15.207 (2), c = 14.052 (2) A, beta = 101.56 (1) degree, V = 4588 (1) A3, Z = 8, Dx = 1.40 Mgm-3, lambda (Mo K alpha) = 0.71069 A, mu = 1.823 mm-1, F(000) = 2008, T = 295 K, R = 0.035 for 2617 observed reflections; (2) N-phenylimidocarbonimidic diamide (1-phenylbiguanide), C8H11N5, M(r) = 177.21, monoclinic, P2(1)/c, a = 9.781 (2), b = 35.040(5), c = 11.000 (2) A, beta = 97.72(1) degree, V = 3736(1)A3, Z = 16, Dx = 1.26 Mg m-3, lambda (Mo K alpha) = 0.71069 A, mu = 0.084 mm-1, F(000) = 1504, T = 295 K, R = 0.070 for 3407 observed reflections; (3) 8-methyl-8-azabicyclo[3.2.1]oct-3yl 3,5-dicholorobenzoate (MDL 72222), C15H17Cl2NO2, M(r) = 314.21, triclinic, P1, alpha = 8.480 (3), b = 9.840 (3), c = 10.158 (4) A, alpha = 90.04 (3), beta = 111.77 (3), gamma = 105.07(3) degrees, V = 755.6(5) A3, Z = 2, Dx = 1.38 Mg m-3, lambda(Mo K alpha) = 0.71069 A, mu = 0.430 mm-1, F(000) = 328, T = 295 K, R = 0.070 for 1685 observed reflections; (4) 1, 2, 3, 4, 10, 14b-hexahydro-2-methyldibenzo[c.f]pyrizino[1, 2-alpha]azepine hydrochloride (mianserin. HCl), C18H21N2+. Cl-, M(r) = 300.83, monoclinic, P2(1)/a, a = 9.014 (2), b = 14.917 (2), c = 12.412 (2) A, beta = 108.84 (1) degree, V = 1579.5 (5) A3, Z = 4, Dx = 1.26 Mg m-3, lambda(Mo K alpha) = 0.71069 A, mu = 0.237 mm-1, F(000) = 640, T = 295 K, R = 0.063 for 1493 observed reflections. A systematic structural analysis of the present compounds and others known to interact with the 5-HT1, 5-HT2 and 5-HT3 receptors allows to identify their similarities with the endogenous ligand serotonin (5-HT) and the stereochemical differences which determine selectivity for the various receptor subtypes. The pharmacophoric feature for 5-HT receptor binding is identified in a constant-length vector linking an aromatic ring with a protonated nitrogen, while specific affinities for receptorial subtypes and the nature of the effect appear to be modulated by the dimensions of the substituents at nitrogen. Topics: Biguanides; Crystallography, X-Ray; Ligands; Mianserin; Piperazines; Receptors, Serotonin; Receptors, Serotonin, 5-HT3; Serotonin Antagonists; Serotonin Receptor Agonists; Stereoisomerism; Tropanes | 1996 |
Neuronal mechanism of the inhibitory effect of calcitonin on N-methyl-D-aspartate-induced aversive behavior.
To elucidate the mechanism of antinociceptive effects of calcitonin, we investigated whether receptor antagonists for various neurotransmitter receptors alter the inhibitory effect of calcitonin on intrathecally injected N-methyl-D-aspartate-induced aversive behavior in mice. Neither naloxone, an opioid receptor antagonist, phentolamine and benextramine, alpha-adrenoceptor antagonists, nor ritanserin, a 5-HT2A receptor antagonist, inhibited the calcitonin-induced anti-aversive effects. Pindolol and (--)-propranolol, non-selective antagonists of beta-adrenoceptors and 5-HT1 receptors, 1-(2-methoxyphenyl)-4-[4-(2-phethalimido) butyl]-piperazine hydrobromide (NAN-190), a 5-HT1A receptor antagonist, 3-tropanyl-3,5-dichlorobenzoate (MDL72222) and metoclopramide, 5-HT3 receptor antagonists, significantly inhibited the calcitonin-induced anti-aversive effects. (--)-Bicuculline, a GABAA receptor antagonist, phaclofen and 5-aminovaleric acid, GABAB receptor antagonists, also attenuated the calcitonin-induced anti-aversive effects. These results suggest that beta-adrenoceptor, 5-HT1A, 5-HT3, GABAA and GABAB receptors, but not alpha-adrenoceptor, opioid nor 5-HT2A receptors, are involved in the inhibitory effect of calcitonin on intrathecally injected N-methyl-D-aspartate-induced aversive behavior in mice. Topics: Adrenergic alpha-Antagonists; Animals; Behavior, Animal; Calcitonin; Cystamine; GABA Antagonists; Injections, Spinal; Male; Mice; Morphine; N-Methylaspartate; Naloxone; Phentolamine; Pindolol; Piperazines; Propranolol; Receptors, Neurotransmitter; Ritanserin; Serotonin Antagonists; Tropanes | 1995 |