bay-11-7082 has been researched along with pevonedistat* in 2 studies
2 other study(ies) available for bay-11-7082 and pevonedistat
Article | Year |
---|---|
Inhibition of constitutive NF-κB activity induces platelet apoptosis via ER stress.
Platelets are anucleate cells, known for their pivotal roles in hemostasis, inflammation, immunity, and disease progression. Being anuclear, platelets are known to express several transcriptional factors which exert nongenomic functions, including the positive and negative regulation of platelet activation. NF-κB is one such transcriptional factor involved in the regulation of genes for survival, proliferation, inflammation and immunity. Although, the role NF-κB in platelet activation and aggregation is partially known, its function in management of platelet survival and apoptosis remain unexplored. Therefore, two unrelated inhibitors of NF-κB activation, BAY 11-7082 and MLN4924 were used to determine the role of NF-κB in platelets. Inhibition of NF-κB caused decreased SERCA activity and increased cytosolic Ca Topics: Apoptosis; bcl-2-Associated X Protein; Blood Platelets; Calcium; Cyclopentanes; Endoplasmic Reticulum Stress; Humans; Membrane Potential, Mitochondrial; NF-kappa B; Nitriles; Proto-Oncogene Proteins c-bcl-2; Pyrimidines; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Sulfones | 2017 |
The IKK inhibitor Bay 11-7082 induces cell death independent from inhibition of activation of NFκB transcription factors.
Multiple myeloma (MM) displays an NFκB activity-related gene expression signature and about 20% of primary MM samples harbor genetic alterations conducive to intrinsic NFκB signaling activation. The relevance of blocking the classical versus the alternative NFκB signaling pathway and the molecular execution mechanisms involved, however, are still poorly understood. Here, we comparatively tested NFκB activity abrogation through TPCA-1 (an IKK2 inhibitor), BAY 11-7082 (an IKK inhibitor poorly selective for IKK1 and IKK2), and MLN4924 (an NEDD8 activating enzyme (NAE)-inhibitor), and analyzed their anti-MM activity. Whereas TPCA-1 interfered selectively with activation of the classical NFκB pathway, the other two compounds inhibited classical and alternative NFκB signaling without significant discrimination. Noteworthy, whereas TPCA-1 and MLN4924 elicited rather mild anti-MM effects with slight to moderate cell death induction after 1 day BAY 11-7082 was uniformly highly toxic to MM cell lines and primary MM cells. Treatment with BAY 11-7082 induced rapid cell swelling and its initial effects were blocked by necrostatin-1 or the ROS scavenger BHA, but a lasting protective effect was not achieved even with additional blockade of caspases. Because MLN4924 inhibits the alternative NFκB pathway downstream of IKK1 at the level of p100 processing, the quite discordant effects between MLN4924 and BAY 11-7082 must thus be due to blockade of IKK1-mediated NFκB-independent necrosis-inhibitory functions or represent an off-target effect of BAY 11-7082. In accordance with the latter, we further observed that concomitant knockdown of IKK1 and IKK2 did not have any major short-term adverse effect on the viability of MM cells. Topics: Amides; Apoptosis; Blotting, Western; Cell Line; Cell Survival; Cyclopentanes; Enzyme-Linked Immunosorbent Assay; Flow Cytometry; Gene Expression Regulation, Neoplastic; Humans; I-kappa B Kinase; Microscopy, Fluorescence; Multiple Myeloma; NF-kappa B; Nitriles; Pyrimidines; RNA, Small Interfering; Signal Transduction; Sulfones; Thiophenes | 2013 |