bay-11-7082 has been researched along with divinyl-sulfone* in 2 studies
2 other study(ies) available for bay-11-7082 and divinyl-sulfone
Article | Year |
---|---|
Antibacterial activity evaluation of vinyl sulfones against global predominant methicillin-resistant Staphylococcus aureus USA300.
The electrophilic potential of vinyl sulfone permits the rapid capture of cysteine-containing proteins under physiological conditions. These cysteine proteinases play vital roles in bacterial survival and pathogenesis of Staphylococcus aureus (S. aureus) and the global health threat methicillin resistant S. aureus (MRSA). Here in, total of 28 vinyl sulfones were synthesized and subjected to susceptibility testing of pathogenic bacteria, including global epidemic MRSA PFGE strain type USA300 (SF8300). Number of antibacterial vinyl sulfone derivatives were discovered. Among these, nitrile-substituted vinyl phenyl sulfones showed potent antibacterial activity. (E)-3-((4-methoxyphenyl)sulfonyl)acrylonitrile exhibited the strongest potency with MIC of 1.875 µg/mL against methicillin susceptible S. aureus and 3.75 µg/mL against MRSA USA300. Based on the structure-activity relationship analysis, the antibacterial activity of these compounds may involve sulfhydryl conjugation. In addition, the nitrile-substituted vinyl phenyl sulfone could also impair host cell adhesion. With their promising antibacterial activities, these vinyl sulfones have potential for S. aureus and MRSA therapeutics. Topics: Anti-Bacterial Agents; Bacteria; Humans; Methicillin-Resistant Staphylococcus aureus; Microbial Sensitivity Tests; Nitriles; Staphylococcal Infections; Staphylococcus aureus; Sulfones | 2022 |
Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome.
Activation of the inflammasome generates the pro-inflammatory cytokines interleukin-1 beta and -18, which are important mediators of inflammation. Abnormal activation of the inflammasome leads to many inflammatory diseases, including gout, silicosis, neurodegeneration, and genetically inherited periodic fever syndromes. Therefore, identification of small molecule inhibitors that target the inflammasome is an important step toward developing effective therapeutics for the treatment of inflammation. Here, we show that the herbal NF-kappaB inhibitory compound parthenolide inhibits the activity of multiple inflammasomes in macrophages by directly inhibiting the protease activity of caspase-1. Additional investigations of other NF-kappaB inhibitors revealed that the synthetic I kappaB kinase-beta inhibitor Bay 11-7082 and structurally related vinyl sulfone compounds selectively inhibit NLRP3 inflammasome activity in macrophages independent of their inhibitory effect on NF-kappaB activity. In vitro assays of the effect of parthenolide and Bay 11-7082 on the ATPase activity of NLRP3 demonstrated that both compounds inhibit the ATPase activity of NLRP3, suggesting that the inhibitory effect of these compounds on inflammasome activity could be mediated in part through their effect on the ATPase activity of NLRP3. Our results thus elucidate the molecular mechanism for the therapeutic anti-inflammatory activity of parthenolide and identify vinyl sulfones as a new class of potential therapeutics that target the NLRP3 inflammasome. Topics: Animals; Anti-Inflammatory Agents; Bone Marrow Cells; Caspase 1; Cell Death; Humans; Immunoblotting; Inflammation; L-Lactate Dehydrogenase; Macrophages; Mice; NF-kappa B; Nitriles; Sesquiterpenes; Sulfones | 2010 |