batrachotoxinin-a-20-alpha-benzoate has been researched along with dihydrokavain* in 1 studies
1 other study(ies) available for batrachotoxinin-a-20-alpha-benzoate and dihydrokavain
Article | Year |
---|---|
Kavain, dihydrokavain, and dihydromethysticin non-competitively inhibit the specific binding of [3H]-batrachotoxinin-A 20-alpha-benzoate to receptor site 2 of voltage-gated Na+ channels.
The mode of action of the kava pyrones, kavain, dihydrokavain and dihydromethysticin on the specific binding of [3H]-batrachotoxinin-A 20-alpha-benzoate to epitope 2 of voltage-dependent Na+ channels was investigated by performing saturation experiments in the presence and absence of these kava pyrones. The tested compounds significantly decreased the apparent total number of binding sites (Bmax) for [3H]-batrachotoxinin-A 20-alpha-benzoate (control: 0.5 pmol/mg protein, kava pyrones: 0.2-0.27 pmol/mg protein) with little change in the equilibrium constants (KD) for [3H]-batrachotoxin-A 20-alpha-benzoate (control: 28.2 nM, kava pyrones: 24-31 nM). The results indicate for the kava pyrones a non-competitive inhibition of the specific [3H]-batrachotoxinin-A 20-alpha-benzoate binding to receptor site 2 of voltage-gated Na+ channels. Topics: Animals; Batrachotoxins; Cerebral Cortex; Ion Channel Gating; Male; Protein Binding; Pyrones; Rats; Rats, Wistar; Sodium Channels; Synaptosomes; Tritium | 1998 |