basic-yellow-28 has been researched along with basic-red-46* in 3 studies
3 other study(ies) available for basic-yellow-28 and basic-red-46
Article | Year |
---|---|
Photocatalytic degradation of Basic Red 46 and Basic Yellow 28 in single and binary mixture by UV/TiO2/periodate system.
The present study deals with the investigation of photocatalytic degradation and mineralization of C.I. Basic Red 46 (BR46) and C.I. Basic Yellow 28 (BY28) dyes in single and binary solutions as a function of periodate ion concentration (IO(4)(-)), irradiation time, initial pH and initial dye concentrations. First order derivative spectrophotometric method was used for to simultaneous analysis of BY28 and BR46 in binary mixtures. Langmuir-Hinshelwood kinetic model was applied to experimental data and apparent reaction rate constant values were calculated. The apparent degradation rate constant values of BR46 were higher than those of BY28 for all experiments in single dye solutions. On the other hand, the significant reductions were observed for the apparent degradation rate constant values of the BR46 in the presence of BY28 in binary solutions whereas TOC removal efficiency slightly enhanced in binary system. The highest TOC removal efficiency was obtained at pH 3.0 by adding 5mM periodate ion in to the solution in the presence of 1g/L TiO(2) for both dye solutions. After 3h illumination, 68, 76 and 75% mineralization were found for 100mg/L BY28, 100mg/L BR46 and 50+50mg/L mixed solutions, respectively. Topics: Azo Compounds; Catalysis; Hydrogen-Ion Concentration; Kinetics; Periodic Acid; Photochemical Processes; Reducing Agents; Time Factors; Titanium; Ultraviolet Rays; Water Pollutants, Chemical; Water Purification | 2009 |
Equilibrium and kinetic adsorption study of Basic Yellow 28 and Basic Red 46 by a boron industry waste.
In this study, the adsorption characteristics of Basic Yellow 28 (BY 28) and Basic Red 46 (BR 46) onto boron waste (BW), a waste produced from boron processing plant were investigated. The equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various adsorption isotherm models and the results have shown that adsorption behavior of two dyes could be described reasonably well by a generalized isotherm. Kinetic studies indicated that the kinetics of the adsorption of BY 28 and BR 46 onto BW follows a pseudo-second-order model. The result showed that the BW exhibited high-adsorption capacity for basic dyes and the capacity slightly decreased with increasing temperature. The maximum adsorption capacities of BY 28 and BR 46 are reported at 75.00 and 74.73mgg(-1), respectively. The dye adsorption depended on the initial pH of the solution with maximum uptake occurring at about pH 9 and electrokinetic behavior of BW. Activation energy of 15.23kJ/mol for BY 28 and 18.15kJ/mol for BR 46 were determined confirming the nature of the physisorption onto BW. These results indicate that BW could be employed as low-cost material for the removal of the textile dyes from effluents. Topics: Adsorption; Azo Compounds; Boron; Hydrogen-Ion Concentration; Industrial Waste; Kinetics; Microscopy, Electron, Scanning; Molecular Structure; Solubility; Temperature; Thermodynamics; Time Factors; Waste Disposal, Fluid; Water Pollutants, Chemical; X-Ray Diffraction | 2009 |
Adsorption of basic dyes from single and binary component systems onto bentonite: simultaneous analysis of Basic Red 46 and Basic Yellow 28 by first order derivative spectrophotometric analysis method.
The present study deals with the simultaneous analysis and adsorption of Basic Yellow 28 and Basic Red 46 dyes in binary mixture onto bentonite. First order derivative spectrophotometric method was used for simultaneous analysis of BY28 and BR46 in binary mixtures. The adsorption experiments were carried out in a batch system. The mono- and multi-component Langmuir and Freundlich isotherm models were applied to experimental data and the isotherm constants were calculated for BY28 and BR46 dyes. The monolayer coverage capacities of bentonite for BY28 and BR46 dyes in single solution system were found as 256.4 mg/g and 333.3mg/g, respectively. It was observed that the equilibrium uptake amounts of BY28 and BR46 dyes in binary mixture onto bentonite decreased considerably with increasing concentrations of the other dye resulting in their antagonistic effect. The adsorption equilibrium data fitted more adequately to mono-component Langmuir isotherm model than mono-component Freundlich isotherm model, while the extended Freundlich isotherm model adequately predicted the multi-component adsorption equilibrium data at moderate ranges of concentration. Thermodynamic parameters showed that adsorption of BR46 and BY28 was endothermic and spontaneous in nature. Topics: Adsorption; Azo Compounds; Bentonite; Hydrogen-Ion Concentration; Models, Chemical; Spectrophotometry; Temperature; Thermodynamics | 2008 |