basic-red-46 and titanium-dioxide

basic-red-46 has been researched along with titanium-dioxide* in 3 studies

Other Studies

3 other study(ies) available for basic-red-46 and titanium-dioxide

ArticleYear
Photocatalytic degradation of Basic Red 46 and Basic Yellow 28 in single and binary mixture by UV/TiO2/periodate system.
    Journal of hazardous materials, 2009, May-30, Volume: 164, Issue:2-3

    The present study deals with the investigation of photocatalytic degradation and mineralization of C.I. Basic Red 46 (BR46) and C.I. Basic Yellow 28 (BY28) dyes in single and binary solutions as a function of periodate ion concentration (IO(4)(-)), irradiation time, initial pH and initial dye concentrations. First order derivative spectrophotometric method was used for to simultaneous analysis of BY28 and BR46 in binary mixtures. Langmuir-Hinshelwood kinetic model was applied to experimental data and apparent reaction rate constant values were calculated. The apparent degradation rate constant values of BR46 were higher than those of BY28 for all experiments in single dye solutions. On the other hand, the significant reductions were observed for the apparent degradation rate constant values of the BR46 in the presence of BY28 in binary solutions whereas TOC removal efficiency slightly enhanced in binary system. The highest TOC removal efficiency was obtained at pH 3.0 by adding 5mM periodate ion in to the solution in the presence of 1g/L TiO(2) for both dye solutions. After 3h illumination, 68, 76 and 75% mineralization were found for 100mg/L BY28, 100mg/L BR46 and 50+50mg/L mixed solutions, respectively.

    Topics: Azo Compounds; Catalysis; Hydrogen-Ion Concentration; Kinetics; Periodic Acid; Photochemical Processes; Reducing Agents; Time Factors; Titanium; Ultraviolet Rays; Water Pollutants, Chemical; Water Purification

2009
Photocatalytic removal of C.I. Basic Red 46 on immobilized TiO2 nanoparticles: artificial neural network modelling.
    Environmental technology, 2009, Volume: 30, Issue:11

    C.I. Basic Red 46, commonly used as a textile dye, was photocatalytically removed using supported TiO2 nanoparticles irradiated by a 30 W UV-C lamp in a batch reactor. The investigated photocatalyst was industrial Degussa P25 (crystallite mean size 21 nm) immobilized on glass beads by a heat attachment method. The catalyst was characterized by XRD, SEM, TEM and BET techniques. The process of the dye decolorization in the presence of TiO2 nanoparticles was experimentally studied through changing the initial dye concentration, UV light intensity and initial pH. The influence of inorganic anions such as chloride, sulphate, bicarbonate, carbonate and phosphate on the photocatalytic decolorization of BR46 was investigated. The decolorization of BR46 follows the pseudo-first-order kinetic according to the Langmuir-Hinshelwood model (k1 = 0.273 mg L(-1) min(-1), 2 = 0.313 (mg L(-1))(-1)). The efficiency parameters such as apparent quantum yield and electrical energy per order (EEO) were estimated. An artificial neural network model (ANN) was developed to predict the photocatalytic decolorization of BR46 solution. The findings indicated that the ANN provided reasonable predictive performance (R2 = 0.96). The influence of each parameter on the variable studied was assessed: initial concentration of the dye being the most significant factor, followed by the initial pH and reaction time.

    Topics: Azo Compounds; Catalysis; Computer Simulation; Kinetics; Light; Models, Chemical; Nanoparticles; Neural Networks, Computer; Photochemistry; Suspensions; Titanium; Ultraviolet Rays; Water; Water Pollutants; Water Purification

2009
Discoloration of a red cationic dye by supported TiO(2) photocatalysis.
    Journal of hazardous materials, 2007, Sep-30, Volume: 148, Issue:3

    The degradation under UV, visible and sunlight irradiation of C.I. Basic Red 46 (BR 46) dye used for acrylic fibers dyeing has been studied in a lab-scale continuous system with two different immobilized TiO(2) systems. Catalyst I was based on TiO(2) particles deposited on cellulose fibers; Catalyst II combined TiO(2) particles deposited on a layer of cellulose fibers (as in Catalyst I) with a layer of carbon fibers and finally a layer of cellulose fibers. The treatment of aqueous dye solutions and industrial wastewater contaminated with the same dye has been evaluated in terms of color removal and chemical oxygen demand (COD) decrease. With UV light, aqueous solutions containing dye were decolorized slightly more rapidly with Catalyst II than with Catalyst I. Sunlight was also very effective and experiments involving sunlight irradiation showed Catalyst II to be the more efficient, giving more than 90% discoloration after 20 min of treatment. Comparing the discoloration yield by adsorption or under visible light for both catalysts, it was observed that the difference between them is below 5%. The adsorption kinetics was found to follow a second-order rate law for Catalyst I and a first-order rate law for Catalyst II. The kinetics of photocatalytic degradation under UV or sunlight were found to follow a first-order rate law for both catalytic systems. Under sunlight the COD removal yield for textile wastewater reaches 33% with Catalyst I against 93% with Catalyst II.

    Topics: Azo Compounds; Catalysis; Hydrogen-Ion Concentration; Photochemistry; Sunlight; Textile Industry; Titanium; Waste Disposal, Fluid; Water Pollutants, Chemical

2007