barium has been researched along with herbimycin in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (50.00) | 18.2507 |
2000's | 1 (50.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Amoroso, S; Annunziato, L; Cataldi, M; di Renzo, G; Guerriero, S; Lombardi, G; Taglialatela, M | 1 |
Ishikawa, T; Kimura, M; Nakayama, K; Obara, K; Sasase, T; Tanabe, Y | 1 |
2 other study(ies) available for barium and herbimycin
Article | Year |
---|---|
Protein-tyrosine kinases activate while protein-tyrosine phosphatases inhibit L-type calcium channel activity in pituitary GH3 cells.
Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Animals; Barium; Benzoquinones; Calcium; Calcium Channels; Calcium Channels, L-Type; Cell Line; Enzyme Inhibitors; Genistein; Isoflavones; Kinetics; Lactams, Macrocyclic; Membrane Potentials; Patch-Clamp Techniques; Phenols; Pituitary Gland; Pituitary Neoplasms; Potassium; Protein Tyrosine Phosphatases; Protein-Tyrosine Kinases; Quinones; Rifabutin; Time Factors | 1996 |
Specific inhibition of stretch-induced increase in L-type calcium channel currents by herbimycin A in canine basilar arterial myocytes.
Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Animals; Barium; Basilar Artery; Benzoquinones; Calcium Channel Agonists; Calcium Channels, L-Type; Cell Size; Dogs; Dose-Response Relationship, Drug; Enzyme Inhibitors; Female; Genistein; Hypotonic Solutions; Isoflavones; Isotonic Solutions; Lactams, Macrocyclic; Male; Membrane Potentials; Muscle, Smooth, Vascular; Nicardipine; Osmolar Concentration; Patch-Clamp Techniques; Phenols; Physical Stimulation; Protein-Tyrosine Kinases; Quinones; Rifabutin; Vanadates | 2000 |