Page last updated: 2024-08-24

baicalin and naringenin

baicalin has been researched along with naringenin in 10 studies

Research

Studies (10)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (10.00)18.2507
2000's3 (30.00)29.6817
2010's5 (50.00)24.3611
2020's1 (10.00)2.80

Authors

AuthorsStudies
Chen, K; Cheng, YC; Hu, CQ; Kilkuskie, RE; Lee, KH; Shi, Q1
Broedel, SE; Cihlar, RL; ElSohly, HN; Ferreira, D; Jacob, MR; Joshi, AS; Khan, IA; Khan, SI; Li, XC; Raulli, RE; Walker, LA; Zhang, Z1
Saeki, K; Sunaga, S; Takahashi, S; Takasawa, R; Tanuma, S; Yoshimori, A1
Artursson, P; Bergström, CA; Hoogstraate, J; Matsson, P; Norinder, U; Pedersen, JM1
Amić, D; Lucić, B1
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR1
Aquino, TM; Araújo-Júnior, JX; da Silva-Júnior, EF; Leoncini, GO; Rodrigues, ÉES1
Chellappan, DK; Collet, TA; Dighe, SN; Dua, K; Ekwudu, O; Katavic, PL1
Fernandes, E; Fernandes, PA; Freitas, M; Oliveira, A; Proença, C; Ramos, MJ; Ribeiro, D; Silva, AMS; Sousa, JLC1
Abubakar, S; Hassandarvish, P; Oo, A; Seyedi, SS; Shankar, EM; Shukri, M; Zandi, K1

Reviews

2 review(s) available for baicalin and naringenin

ArticleYear
The medicinal chemistry of Chikungunya virus.
    Bioorganic & medicinal chemistry, 2017, 08-15, Volume: 25, Issue:16

    Topics: Animals; Antiviral Agents; Biological Products; Chemistry, Pharmaceutical; Chikungunya Fever; Chikungunya virus; Dose-Response Relationship, Drug; Humans; Microbial Sensitivity Tests; Molecular Structure; Structure-Activity Relationship

2017
Recent update on anti-dengue drug discovery.
    European journal of medicinal chemistry, 2019, Aug-15, Volume: 176

    Topics: Animals; Antiviral Agents; Biological Products; Cell Line, Tumor; Dengue Virus; Drug Discovery; Humans; Serine Proteinase Inhibitors; Viral Nonstructural Proteins; Virus Replication

2019

Other Studies

8 other study(ies) available for baicalin and naringenin

ArticleYear
Anti-AIDS agents, 10. Acacetin-7-O-beta-D-galactopyranoside, an anti-HIV principle from Chrysanthemum morifolium and a structure-activity correlation with some related flavonoids.
    Journal of natural products, 1994, Volume: 57, Issue:1

    Topics: Antiviral Agents; Cells, Cultured; Flavonoids; Galactosides; HIV-1; Humans; Mass Spectrometry; Medicine, Chinese Traditional; Plants, Medicinal; Spectrophotometry, Infrared; Spectrophotometry, Ultraviolet; Structure-Activity Relationship; Virus Replication; Zidovudine

1994
Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies.
    Journal of natural products, 2002, Volume: 65, Issue:12

    Topics: Antifungal Agents; Candida albicans; Combretaceae; Cryptococcus neoformans; Enzyme Inhibitors; Fatty Acid Synthases; Inhibitory Concentration 50; Isoflavones; Melastomataceae; Molecular Structure; Moraceae; Paspalum; Plants, Medicinal; Saccharomyces cerevisiae; Structure-Activity Relationship; Tannins; Triterpenes

2002
Structure-activity relationship of human GLO I inhibitory natural flavonoids and their growth inhibitory effects.
    Bioorganic & medicinal chemistry, 2008, Apr-01, Volume: 16, Issue:7

    Topics: Animals; Biological Products; Cell Line; Cell Proliferation; Enzyme Inhibitors; Flavonoids; Humans; Hydroxylation; Ketones; Lactoylglutathione Lyase; Molecular Structure; Spodoptera; Structure-Activity Relationship

2008
Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2).
    Journal of medicinal chemistry, 2008, Jun-12, Volume: 51, Issue:11

    Topics: Administration, Oral; Animals; Antineoplastic Agents; Antipsychotic Agents; Antiviral Agents; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Cell Line; Computer Simulation; Cytochrome P-450 Enzyme System; Drug-Related Side Effects and Adverse Reactions; Estradiol; Humans; Insecta; Liver; Models, Molecular; Multidrug Resistance-Associated Protein 2; Multidrug Resistance-Associated Proteins; Neoplasm Proteins; Pharmaceutical Preparations; Pharmacology; Structure-Activity Relationship

2008
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
    Bioorganic & medicinal chemistry, 2010, Jan-01, Volume: 18, Issue:1

    Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics

2010
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
    Journal of medicinal chemistry, 2012, May-24, Volume: 55, Issue:10

    Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection

2012
Structural Specificity of Flavonoids in the Inhibition of Human Fructose 1,6-Bisphosphatase.
    Journal of natural products, 2020, 05-22, Volume: 83, Issue:5

    Topics: Drug Design; Enzyme Inhibitors; Flavonoids; Fructose; Fructose-Bisphosphatase; Humans; Hypoglycemic Agents; Liver; Molecular Structure

2020
Computational Approach Towards Exploring Potential Anti-Chikungunya Activity of Selected Flavonoids.
    Scientific reports, 2016, 04-13, Volume: 6

    Topics: Antiviral Agents; Binding Sites; Chikungunya virus; Chromones; Flavanones; Flavones; Flavonoids; Molecular Docking Simulation; Protein Binding; Viral Nonstructural Proteins

2016
chemdatabank.com